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I: EXECUTIVE SUMMARY

A. PURPOSE AND SCOPE

This report documents efforts to understand approaches to evidential
reasoning that may be useful in application of expert-system techniques to
image analysis (IA). These techniques offer significant improvements in
image analysis, particularly in the coordinated application of specialized
algorithms,

A central element in such expert-system (ES) applications is the han-
dling of evidence, In most tasks, evidence accumulates over time to dynam-
ically affect uncertainties, gso that the decision preferred earlier may
differ from the one preferred later, However, delaying a decision is often
not feasible, since this may foreclose opportunities or increase costs,
Thus, it is important to understand how accumulating evidence will affect

the decision process in the face of uncertainty.

There is no general consensus on how best to attack evidential-reason-
ing (ER) problems, particularly in expert-system applications. Several
approaches have evolved, but they have their roots in diverse fields, such
as statistics and philosophy, and have neither a common terminology nor a

common set of assumptions.

The effort documented here has four principal goals: (1) to clarify
the basic issues in evidential reasoning, (2) to provide a common framework
for analysis, (3) to structure the ER process for major expert-system tasks
in image analysis, and (4) to identify directions for further research,

Its scope has been bounded in the following ways:
° Ef fort has been spread evenly across the spectrum of ER
approaches; each has been treated to approximately the

same level of detail in order to provide a uniform view of
relative applicability.
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° Only low-level vision through the level of the primal sketch (M3)
is considered, although extensions to high-level vision are cer-

tainly possible.

® only rule-oriented techniques for expert-systems are considered;
extensions to data-oriented, object-oriented, and procedure-
oriented techniques are possible,
The approach used to attain these goals within the bounds cited is summar-

ized below.

B. APPROACH

This research was carried out in three major segments. The first is
primarily concerned with theories of evidential-reasoning, the second with
applications in image-analysis expert gystems, and the third with current

results and further research.

The first segment of the research takes place in two steps. In the
first step, it structures the evidential-reasoning problem in a formal par-
adigm robust enough to be of practical use in design and construction of
expert systems, The elements of the paradigm are:

Background Elements
Observation Reports

Updating Mechanism
Decision Mechanism.,

In the second step, this segment formulates gix important theoretical
approaches in a parallel fashion in order to identify key assumptions,

similarities, and differences. The six approaches are:

Classical Bayes
Convex Bayes
Dempster-Shafer
Kyburg
Neyman-Pearson
possibility.

*This segment results in parallel formulations of the ER approaches and a

discussion of points of correspondence and incommensurability.
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The second segment of the research applies the ER approaches to three
important tasks for expert systems in the domain of image analysis. The

tasks discussed are:

Diagnosis - the inference of system behavior from various reports

) Integration - the meaningful combination of a number of disgparate
inputs into a smaller number of outputs

) Control -~ the choice of actions that influence system behavior.

Sample tasks are constructed for each type, and the application of each ER
approach to each sample task is discussed. This segyment concludes with an

assegsment of the strengths and weaknesses of each approach.

The third segment of the research addresses directions for further
effort. It first summarizes the results of the current effort and then
identifies important questions that bear on successful application of

expert-gsystem technology to image analysis.

c. RESULTS

The evidential-reasoniny research reported in Chapter II can be sum-

marized as follows:

° The evidential-reasoningy problem can be formulated in tevms of a
four-part paradigm:

- Background Elements - This portion of the paradigm contains
a definition of the domain of discourse, that is, of the
world-model to which we shall apply the ER process. It also
contains current knowledge of that world-model to which we
shall apply the ER process. It also contains current knowl-
edge of that world including, possibly, knowledge of the
cost of various actions in that world. Knowledge is .
described in terms of belief states. L

- Observation Reports - This portion of the paradigm describes
the structure and content of reports about the external
world that are the raw material for revision of the
knowledge embedded in the background. -~

-- Updatingy Mechanism - This portion of the paradigm describes b
the assumptions, rules, and algorithms used to revised |
knowledge upon receipt of observation reports,




—

- Decision Mechanism - This portion of the paradigm describes
the assumptions, rule-, and algorithms used to choose among
various courses of action given revised knowledge of the

world.

) Each of the gsix major approaches can be expressed in terms of the
four-part paradigm.

) Major similarities in the ER approaches are found in two back-
ground elements:

- Structure of the algebra of statements (but not necessarily
the content)

- The loss function,

° Major differences in the ER approaches are found in several com-
ponents:

- Structures given to belief states (points, intervals, convex
sets, fuzzy sets)

- Updating algorithms (Bayes' Theorem, Dempster's Rule, princ-
iples of direct inference, confidence intervals, fuzzy com-
bination)

- Decision algorithms (expected loss on point-valued p-
functions, expected loss on intervals or convex sets, fuzzy
decision rules),

The research into application of evidential-reasoning approaches to
expert-system tasks in image analysis reported in Chapter III can be sum-

marized as follows:

° Major expert-system tasks in this domain are: (1) diagnosis, the
inference of system behavior from data on system processes, (2)
integration, the meaningyful combination of a number of disparate
inputs into a smaller number of outputs, and (3) control, the
choice of actions that influence system behavior.

) Each of the ER approaches can be applied to sample tasks from
these three categories, Several strengths and weaknesses can be
identified:

-- Interval and convex-set representations of belief states may
be useful in complex ES tasks (e.g., control), but do so at
the expense of added complexity.

- Specialized decision procedures must be developed in order
to make practical use of these robust representations.

- Criteria of =vidential relevance are being developed, but
require practical application for assessment.
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-~ Imprecise limnguistic terms may be characterized by fuzzy :
sets, but this also requires practical application for .

assessment. .

Directions for further research include efforts to: (1) develop a -
prototype image-analysis expert system for application to current concerns f
of the Ergineer Topographic Laboratories (ETL), (2) compare several ER :
techniques in direct application to one or more detailed image-analysis -

tasks, (3) develop rules for specific image-analysis tasks, (4) investigate
the relative utility of various types of rule-based control systems, and {?:
(5) investigate the utility of trainable or learning expert-systems for :

image analysis.
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. II: PARALLEL FORMULATION OF RELEVANT e
- EVIDENTIAL-REASONING THEORIES .

A, INTRODUCTION

This portion of our research serves two purposes, First, it

structures the evidential-reasoning problem in a paradigm robust enough to

be of practical use in design and construction of expert systems. Second, .
it formulates six important theoretical approaches in a parallel fashion in

order to identify key assumptions, similarities, and differences.

Effort applied to this part of our research has been spread evenly
across the spectrum of ER approaches. Each approach has been treated to R

approximately the same level of detail in order to provide a uniform view 7&;

of relative applicability. S
RS

Section B structures the ER problem. Sections C and D formulate and .

ny s

compare the six theoretical approaches. Section E summarizes results of }’{:

this chapter,

B. THE EVIDENTIAL~REASONING PROBLEM

1. General Description

The problem of evidential reasoning is a very general one, and may be

formulated as follows: R
® Given reports about the world, and a set of current beliefs about C;:j

the world, how shall I revise my beliefs as new reports are Ic::

received? ~o

Reports may range from the simple to the complex in referring to various
objects or sets of objects in the world. They also may refer to events and

may contain various uncertainties., Reports may even refer elliptically to f}qﬁ
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ill-defined sets, Beliefs also range from the simple to the complex, and

S

have a notoriously obscure structure,

Of course, since we seek to construct expert systems to aid in certain

R |

relatively well-defined image-analysis tasks, all of the complications

implicit in the question above need not be explored here, However, a .-":j,-

]

rrYrs
ate

central element in such expert-system applications as diagnosis,

integration, and control is the handling of evidence, In such tasks,

RS

L 4

evidence accumulates over time to dynamically affect uncertainties, so that s

the decision preferred earlier may differ from the one preferred later,

o

There is no general consensus on how best to attack evidential-
v reasoning problems, particularly in expert-system applications. Several R
- different theoretical approaches have evolved, but they have their roots in )
diverse fields, such as statistics and philosophy, and have neither a A
- common terminology nor a common set of assumptions. This makes it

difficult to answer such questions as:

" ) what are the rules for structuring the reports about the world
that feed raw material into the evidential-updatiny schemes ol
i advocated by each theoretical approach?
® What are the constraints on ER that are implicit (and explicit) "‘ .
in application of each of the approaches? More broadly, what e
f models of ER are implicitly and explicitly advocated by each R0
g approach? o
P Such concerns lead us to seek a structured paradigm broad enough to )
- encompass the models associated with each approach. This paradigm will be tf-:
-\
,v, v used to identify and compare assumptions, rules, and constraints, &k'\
& )
bl
P 2. A Structured Paradigm
r R
. The structured paradigm for the ER process that we shall use i
‘L throughout the remainder of this report has four components: b:':::
- --:\-
- ) Background Elements - This portion of the paradigm contains a -
’ definition of the domain of discourse, that is, ¥f the world- -
! model to which we shall apply the ER process. It also contains .‘t
! current knowledge of that world including, possibly, knowledge of }-*'
the cost of various actions in that world. Knowledge is N
’ described in terms of belief states. t-:.:-
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) Observation Reports - This portion of the paradigm describes the
structure and content of reports about the external world that
are the raw material for revision of the knowledge embedded in
the background.

) Updating Mechanism - This portion of the paradigm describes the
assumptions, rules, and algorithms used to revise knowledge upon
receipt of observation reports,

e pecision Mechanism - This portion of the paradigm describes the
assumptions, rules, and algorithms used to choose among various
courses of action given revised knowledge of the world.

Figure II-1 shows the inter-relationships of components of the paradigm.

Some of the research literature excludes decision-making from the ER
process, It is included here for two reasons: (1) the image-analysis
tasks envisioned for expert systems will generally involve decisions of one
sort or another, and (2) the structure of the other components is

intimately linked, in most cases, with the decision process,

The following section discusses each ER approach within the common

framework provided by the structured paradigm. Section D compares them,

C. THEORETICAL APPROACHES

We will discuss six major approaches to evidential reasoning:

° Classical Bayes - based upon point or interval represenations of
belief states and Bayes' Theorem

® Convex Bayes - based upon convex sets and Bayes' Theorem

) Dempster-shafer - based upon mass functions and Dempster's Rule
of Combination

) Kyburg - based upon interval representations and direct inference

® Neyman-Pearson - based upon confidence intervals

) Possibility - based upon fuzzy sets and degree-of-membership
functions.

Each will be presented separately in terms of the structured ER paradigm
described in Section B, A comparative analysis will be carried out in

Section D.
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1. Approach 1: Classical Bayes

a, Background Elements

The background in this approach consists of three elements: (1) an
algebra of statements, (2) a probability function defined over this
algebra, and (3) a utility function defined over the same algebra, The
algebra defines the domain of discourse, the probability function assigns
degrees of belief to elements of the domain, and the utility function
provides a means of reaching decisions in the domain when coupled with the

decision mechanism,

The algebra used in the classical Bayes approach is known as a
Lindenbaum-Tarski (LT) algebra. It consists of base elements, operators,
and propositions entailed by application of the operators to the base

elements.

The base elements are variously known as atoms, states of affairs, or
possible worlds. They are assumed to be mutually exclusive, so that
application of the disjunctive operator alone expands the base elements
into the set of all possible legal statements about the domain of
discourse., In our discussion, we shall refer to the mutually exclusive

elements as base elements and to the legal statements as atoms.

For example, if there are four mutually exclusive base elements
labelled "1", "2", "3", and "4", then the set of legal statements has the

following members:

{null)
(1) (2) (3) (4)
(1 v 2) (1 v 3) (1 v 4) (2 v 3) (2 v 4) (3 v 4)
(1v2v3) (1 v 2 v 4) (1 v 3v4) (2 v3va)
(1 v2vivy)

In general, there will be N, legal statements when there are n base

elements, where
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Thus there will be 16 statements if there are 4 base elements, 256

statements given 8 base elements, and so on.

The second major element of the background is a probability function

defined over the algebra of statements and obeying the following axioms:

0 < p(x) <1

p(x vy) = p(x) + ply), if x and y are mutually exclusive.

The sum of the probabilities assigned to the base elements is required to
be 1,

The probability function assigns numbers to the legal statements based
upon these axioms. For example, if the probabilities assigned to the four
base elements are each 0.25, then the legal statements have the following

p-values:

(null)
0.0
(1) (2) (3) (4)
«25 «25 «25 +25
(1 v 2) (1 v 3) (1 v 4 (2 v 3) (2 v &) (3 v 4)
<50 «50 <50 «50 «50 50
(1 v2v3) (1 v2vy) (1 v 3 v 4) (2 v3vyi)
«75 «75 .75 .75
(1 v2v3va)
1.0
I1I-6
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Q: The updating mechanism discussed below controls the manner in which thesge

p-values change as evidence is received,

i! The third major element of the background is a utility function

oo defined over the algebra of statements, This function is ordinarily
T th

o construed as a loss function; it gives the loss, lij' incurred when the 1
action is taken in the face of the state of nature corresponding to the jth

E: base element in the algebra (BS, C2, J1).

. For example, if there are three possible actions and four base

wh.

Ef elements, 1lij could be represented by the following matrix of i rows and j

columns:

[ 4321 |
1, =|20109]
| 369 2| .

The decision mechanism discussed below controls the manner in which the

loss function is used to indicate which action should be taken,

b. Observation Reports

The obgervation reports are direct assignments of new p-values to
elements of the algebra of statements. That is, they assign a number or
numbers to certain propositions that may be construed as a new degree of
belief in the truth-value of that proposition. The assignment of this new
p-value causes a re-assignment of p-values to other statements in the

algebra via the updating mechanism discussed in the following section,

There are several ways in which this direct assignment of new p-values
may be viewed:

o Each observation report consists of the assignment of a single p-
value of 1.0 to some element in the algebra of statements.

) Each observation report consists of the assignment of a single p-
value in the interval [0,1] to some element in the algebra,

° Each observation report~consists of the assignment of two p-
values in the interval {0,1] to some element in the algebra.
These are construed as lower and upper p-values for the element.

I1-7
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The primary effect of these different views is upon the gize of the algebra

of statements, The number of statements required is largest under the
first view, since we must have a single statement corresponding to each and
every possible observation (parameter value at a certain pixel, value read

on a meter, etc.). The other views allow us to use smaller numbers of

statements, since we may map several obgservations onto a single

statement. Ordinarily, only the first view is utilized in the classical
Bayes approach.

We shall consider a simple example in order to demonstrate the effect
upon the gize of the algebra of statements. Consider a situation in which
the task is to differentiate between a river and a road based upon
measurements of the brightness of candidate topographic features. Suppose
further that the brightness measurement is simply one of three

possibilities: 1low, moderate, or high,

The propositions used to form the algebra of statements would be:

S1 - "The feature is a road."

S2 - "The feature is a river,”

S3 - "The brightness of the feature is low."

S4 - "The brightness of the feature is moderate,"”

S5 - "The brightness of the feature is high."

Under each of the views of observation reports, one simply assigns p-
value(s) to one of these statements and then uses the updating mechanism to

modify the other p-values,

under the first view, the algebra must include statements that
correspond to every possible observation, since the nature of an
observation is to assign some particular statement a p-value of 1.0. 1In
terms of the present example, the addition of propositions like the
following would be required if we are actually receiving observations .

»

[ »' e
/Y

.
S T

consisting of cloud-obscured reflectances: o
-

S6 - "The cloud-obscured reflectance measurement is 1.0."

t,

v
'y

S7 - "The cloud-obscured reflectance measurement is 2.0."

I1-8
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S8 - "The cloud-obscured reflectance measurement is 3.0."
S9 - "The cloud-obscured reflectance measurement is 4.0."

$10- "The cloud-obscured reflectance measurement is 5.0."

T™is view, in essence, leads one to embed uncertainties in the matrix of
condi tional probabilities, That is, the web of inference leads to p-values
less than 1.0 for some statements based upon unitary p-values for other
statements, We shall call this sort of uncertainty "inferential

uncertainty,”

Under the second view, one could use the shorter set of statements (S1
through S85), assign a p-value between 0.0 and 1.0 to one of them, and use
the updating mechanism to modify the others, This means that the web of
inference is prepared to operate not only with inferential uncertainty, but
also with a second sort of uncertainty, one that we shall call "evidential
uncertainty." Understanding the conditions for which this is advantageous

igs an area of ongoing research (T1).

The third view of observation reports, like the second, allows the use
of both inferential and evidential uncertainty. It adds the feature of
lower and upper p-values; these, in a sense, gpread the evidential
uncertainty. As before, situations in which this is advantageous are being

explored in other research,

c. Updating Mechanism

The classical Bayesian approach rests upon Bayes' Rule for calculating

posterior probabilities of states of nature from two items: (1) prior

probabilities on those states, and (2) conditional probabilities for

evidence given certain states of nature. 1In symbolic form,

p(si) P(Ej/Si)

P(Si/E_j) R mecamon oo - - - (191)'
Z P(S)) P(Ej/Sk)
k
11-9
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where
p(si/aj) = posterior probability of state S.1 given evidence EH
P(Si) = prior probability of state Si (i.e., before evidence is
taken into account)
p(Ej/si) = conditional probability of evidence Ej given state

Si-

Given a probability or degree-of-belief distribution on the evidence,
P(Ek), we then compute the current p-value for each state of nature from
the posterior probabilities and the evidential p-values, P(Ek), according
to

Pogr(S;) =2 P(E) P(S,/E) (1.2),

cur i
k

where we assume that the distribution on the evidence is normalized to

one, Variations on this approach are possible depending upon the structure
of the algebra of statements. Note that the formula used here is
compatible with both the first and second approaches to observation

reports, PFigure II-2 provides an overview of classical Bayesian updating.

Peur {o i)} t

P (5,0}

(P (3)} OR (P, (3] {
P (0.1 ) P| CALCULATEP (B0} —P‘ CALCULATE Peyr (3) === {Poye 1}
1 i P

FIGURE li-2.
OVERVIEW OF CLASSICAL BAYESIAN UPDATING

509-2.14-85-5
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In terms of the algebra of statements discussed in this section, there
are no formal differences between any of the statements in the algebra,
.I That is, using statements S1 throuwgh S5 of our current example, observation
reports can be received for any one of the statements, even though the
meaning we have attached to S$3 through S5 would lead us to classify these

three statements as evidence and the other two as states of nature,

-
{: Furthermore, we must remember that the algebra does not consist only
of propositions S1 through S5. It is actually made up of the following
S mutually exclusive base elements:
R BE1 = (St & S3) BE4 = (52 & S3)
' BE2 = (S1 & S4) BES = (S2 & S4)
- BE3 = (S1 & S5) BE6 = (S2 & S5) .
v
Since there are 6 base elements, there are 26 or 64 statements in the
- algebra.
; Let us continue to flesh out the example, We need a set of
u conditional p-values:
- | 1.0 0.0 0.9 0.5 0.3 |
| 0.0 1.0 0.1 0.5 0.9 |
P PCON;; = | 0.9 0.1 1.0 0.0 0.0 |
| 0.5 0.5 0.0 1.0 0.0 |
g | 0.3 0.9 0.0 0.0 1.0 | ,
- where each element in this matrix of i rows and j columns gives the
conditional p-value of the ith gtatement in the algebra given that the p-
.. value of the jth statement is 1.0, The values in this matrix are assumed
;i to be constant throughout the updating process described here.

II-11
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We also need a matrix of the current p-values:

ur'Si)
ur S )

cur

cur
(S )

'U'U"U'U'v

—— —— —— . r—

|
| .
PCUR = |
|
| 2

where each element in this matrix of i rows gives the current p-value of
the ith statement in the algebra. The values in this matrix are revised

each time that a new observation report arrives. Each one is initially

equal to the a priori value, P(Si)'

Some writers divide the statements in the algebra into two distinct

clagses: hypotheses and evidence (D4, D5). Hypotheses are often called

states of nature, while evidence is often termed measurements. 1In any
case, the basic idea is that there is a directionality in the web of
inference: we reason from evidence to hypotheses, We shall term this the

hierarchical approach.

This approach reduces the dimensionality of updating calculations. 1In

the context of our example, observation reports now can only be received on

statements S3, S4, and S5. The conditional p-values for the evidence given

the hypotheses are:

| 0.9 0.1 |
P(E;/H) = | 0.5 0.5 :
0.3 0.9 ' '

where each element in this matrix of i rows and j columns gives the

th

conditional p-value of the i evidential statement in the algebra given

that the p-value of the j th hypothesis is 1.0. The values in this matrix

are assumed to be constant throughout the updating process.

The matrix of the current p-values for hypotheses becomes:




PCUR(H,)
1

- I Pcur(ﬂ1) '
l Pcur(HZ) l

where each element in this matrix of i rows gives the current p-value of
the ith hypothesis in the algebra. The values in this matrix are revised

each time that a new observation report arrives,

The hierarchical approach may be extended so that evidential
statements can serve in one of two different roles in the web of

inference, First, they may serve as evidence for the hypothesis set as
discussed above. Second, they may serve as evidence for other evidential

statements, rather than for the hypothesis set,

There may be an advantage in taking some form of hierarchical
approach, First, the inferential relationships between statements in the
algebra are made more explicit than they are in the undifferentiated
algebra. Second, the computational burden associated with each updating
cycle may be lessened in that the effects of an observation report are
limi ted to portions of the hierarchy explicitly connected with the
statement set that is the subject of the report,.

For either the non-hierarchical or hierarchical approach, if we use
the first interpretation of observation reports, the updating mechanism
operates just once. We have an a priori set of PCUR(H;), we receive an
observation report that assigns a p-value of 1.0 to one of the evidential
statements, and we calculate an new set of PCUR(H;) using equations (1.1)

and (1.2).

Under the second interpretation of observation reports, p-values may

have values less than 1.0 and may therefore change over time, This would
enable the updating cycle to occur more than once, For example, the p-
value for evidential statement S3 might firgst be received as 0.5, then

later as 0.7, and gtill later as 0.9.

The structure of legal evidential statements as embedded in the

algebra of statements is an important issue, Certainly some evidential

statements come in sets in the sense that they correspond to one

obgservation that can have multiple outcomes, such as the reading on a
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digital meter. 1In that case, the observation report is a set of p-values,
one for each evidential statement in the set. For example, the report on

S3, S4, and S5 might be:
ort = {0.5, 0.3, 0.2} .

This would lead to an updating cycle., Additional cycles might be induced

upon receipt of reports like the following:

or2 = {0.7, 0.2, 0.1}

OR3 = {0.9, 0.1, o.o} .

The updating cycles would continue as long as new reports were received.
Other important issues are the effect of different sequences of reports
upon the evolution of p-values and optimal control of these sequences,
These lie beyond the scope of the present effort, but will be addressed in

subsequent work.

d. Decision Mechanism

Given that the updating mechanism provides us with p-values for the
states of nature, and given that the background contains the loss function,

th

we can formulate the expected loss of the i action as follows:

BL, = }: (1ij * PCUR; ) (1.3),
j

where the summation is over the j states of nature.

The general Bayesian decision function is simply to chose, whenever a
decision is required, the action that gives the minimum value of EL; - This
is, of course, based upon the current get of PCURj and the nature of the

loss function,

II-14
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W=, The precise manner in which the loss function has been constructed may
. affect the decision, but discussion of this construction is beyond the
!m scope of this effort, We simply mention here that the loss function matrix
can be made up of absolute losses or relative losses. An absolute loss is
g: the cost of taking the ith action in the face of the jth state of nature,
N while a relative loss for the same action-state pair is the difference
» between the absolute loss of that pair and the minimum of the absolute

- losses incurred by all actions in the face of the jth state of nature. :;:;

= Relative losses are often termed "regrets,"

{j of actions. The actions can range from very simple to very complex. A

Similar remarks can be made concerning the construction of the table ;éj?
simple table of actions might be: 3

Al - Take the pixel under consideration to be part of an edge S

14 .
=4 feature, if the state of nature is A. —d !
4 A2 - Take the pixel under consideration not to be part of an :{fi
P edge feature, if the state of nature is B, oS
. oSN "‘
. A more complex table of actions might be dependent upon the number and -i;?
h structure of observation reports. For example, we might find actions like

the following in such a table:

A3 - Take the pixel under consideration to be part of an edge
I! feature, if observation report 0, has been received,

A4 - Take the pixel under consideration not to be part of an
. edge feature, if reports 02 or O3 have been received.
Elaboration of the various complex tables of actions is highly dependent

upon the gspecific task being addressed, as will be seen in Chapter III.

Decision theory offers an alternative to the approach based upon
current p-values for states of nature. In the decision-theoretic approach,
one constructs decision strategies based upon an assumption of ignorance
o8 concerning the state of nature., Discussion of the construction and
b comparison of such decision strategies (e.g., minimax loss and minimax

regret) is also beyond the scope of the current effort,

i II-15
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We conclude this section with a brief summary of the classical :1

'\11

Bayesian approach (Table II-1)., This table may be compared with similar S
tables for the other approaches, ;Ei

) Background Elements

I

° Observation Reports gﬂ;
- Association of p-value with statements in the algebra, ;;:

® Updating Mechanism :i
- Via Bayes' Theorem, calculate posterior probabilities based :ii

on prior and conditional probabilities., In symbolic form, L;S

° Decision Mechanism

TABLE II-1
SUMMARY OF CLASSICAL BAYESIAN APPROACH

o '.-’ 'f' )

TSI

.

v
s e

Algebra of statements

T s
l Loaly
PRy

Probability function defined over algebra of statements

Loss function defined over algebra of statements and
embodying actions relevant to that algebra,

.

s
»,

’ -

.
DRI,

P(Si) P(Ej/si) ' .:
P(Sl/EJ) D emeocmeoscaoa- - e . “_:]
> B(sy) P(E/S)) ]

k

Use the posterior probabilities and the p-values for
evidence to calculate current p-values on states via

pcur(si) = 2 P(Ek) P(Si/Ek).
k

Choose the action that minimizes the loss function using the
current probability function,
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2. Approach 2: Convex Bayes

' a, Background Elements

The background in this approach, like the classical Bayes approach,
f: consists of three elements: (1) an algebra of statements, (2) a
) probability function defined over this algebra, and (3) a utility or loss
- | function defined over the same algebra. As before, the algebra defines the
. domain of discourse, the probability function assigns degrees of helief to
elements of the domain, and the utility function provides a means of

reaching decisions in the domain.

The convex Bayes approach also uses an LT algebra., It consists of

s base elements, operators, and propositions entailed by application of the
operators to the base elements, As before, the base elements are assumed

gf to be mutually exclusive, so the application of the disjunctive operator

expands them into the set of all possible legal statements about the domain

o of discourse.

The probability function in the convex Bayes approach differs in a
l. significant way from the function in the classical approach. Here the
function is a convex set of p-functions (L2). That is, the belief state is

not characterized by a single function but by a set of functions having the

v e
0 . -'

property of convexity: the set contains every linear combination of any two

members of the set.

7

In general, if there are n base elements, the belief gstate will

38 correspond to a domain in a space of (n-1) dimensions, since the nth :;f
" component of the belief state can be determined if (n-1) components are ;;
:? known., For example, suppose that there are three base elements. The {;
. belief state is then a domain in the the two-dimensional space depicted in :;i
Figure II-3. The region indicated depicts a possible belief state, {Bi¥, Ef

o)
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;’. - BELIEF STATE {Bi}
b Vi2
- Vi1
&=
g FIGURE 1I-3.
i REPRESENTATION OF BELIEF STATE FOR THREE BASE ELEMENTS
e IN THE CONVEX BAYES APPROACH

h 509-2-14-858

It is a five-sided polygon with vertices vi1 through vi5' so that it can be

represented compactly by its vertices as follows:

| viy | 0.4 0.2 0.4 |
_ | viy | 0.4 0.3 0.3 |
g V(B,) = | vi3 | =] 0.5 0.4 0.1 |
; | via | |06 0.2 0.2 ]
e | vis | ] 0.7 0.2 0.1 | .

It must be remembered that this matrix represents only the vertices of Byi
- any point on the boundaries or within them is also a member of {Bi}, In

addition, the belief state may have any number of vertices, but must have

at least one.

= II-18
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b. Obgservation Reports

The convex Bayes approach, like the classical approach, construes the
observation reports as direct assignments of new p-values to elements of
the algebra of statements. That is, the reports assign a number to certain
propositions that may be construed as a new degree of belief in the truth-
value of that proposition, The assignment of this new p-value causes a re-
assignment of p-values to all other statements in the algebra via the

updating mechanism discussed in the following section,

There are now four ways, rather than the three discussed with
reference to the classical approach, in which this direct assignment of new

p-values may be viewed:

° Each observation report consists of the assignment of a single p-
value of 1.0 to some element in the algebra of statements,

) Each observation report consists of the assignment of a single p-
value in the interval [0,1] to some element in the algebra.

° Each observation report consists of the assignment of two p-
values in the interval [0,1] to some element in the algebra.
These are construed as lower and upper p-values for the element,

® Some observation reports consist of the assignment of two or more
linked bounds on the convex set of p-values, These bounds are
linked in the sense that they jointly specify limits on the set,

As before, the primary effect of these different views is upon the size of
the algebra of statements. The updating mechanism remains similar, as we
shall see below. However, the decision mechanism based upon either single

or multiple lower and upper p-values remains problematic.

c. Updating Mechanism

In essence the updating mechanism in the convex Bayes approach

operates like the updating mechanism of the classical Bayes approach. The
key difference is that the entire convex set of functions comprisiny the

belief state is used, rather than a single function.

II-19
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As before, we use Bayes' Theorem to calculate posterior probabilities

based on prior and conditional probabilities. In symbolic form,

pt(si) Pr(sj/si)
P (S./E.) = (2.1)'
r i j
ZPr(Sk) pt(l:-:j/sk)
k

where P, is the rth member of the convex gset of probability functions,

This formula is used as follows:

® Assume evidence E% has been presented, :&;q

® For each value of r, find the gset of P (Si/ +), using the set of .ji;
P (S,), the set of P (E./S,), and the Fortiula above, The values L
of k may be written as 11,2,ce0,1i,¢04,k ). These sets each 7
max
have kmax members,

° The output is the convex set of posterior current probability
functions, that is, the convex set of the sets of Pr(si/zj).

) when new evidence E, is presented, repeat this procedure using En
in place of E,, and the set of Pr(si/Ej) in place of the set of
P (s.) (L2, pb. 83-84).

Each new evidential input thus induces a mapping from one convex set of p-

functions to another convex set,

It is clear that the computational burden of the updating mechanism is

increased by use of the convex set of p-functions in place of a single p-
function. Little work has been done in actual computation of updated

convex belief states, so the extent of this burden is unclear at this time,

d. Decision Mechanism

Upper and lower probabilities for some statement in the algebra can be

taken from the convex set of pr(si/Ej) using the technique of supporting
lines, planes, or hyper-planes (L2, pp.196-198). However, no general

procedure exists to handle upper and lower bounds in a utility function,
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One method of attack is to suppose that the decision indicated is the
one that minimizes the expected loss as was done in the classical

approach, In this case we seek to minimize

EL; = 3 (1, * pCUR)) (2.2),
i

where the summation is over the j states of nature, Using the convex set

of Pt(si/Ej)' we derive upper and lower bounds on each PCURj so that, for

each action, there are now upper and lower bounds on the expected loss. If
PCURj is bounded by PCURUj and PCURLj, then we might say that ELi lies

between ELMIN; and ELMAxi, where

EIMIN; = D, (lj5 * PCURL) (2.3),
3

FIMAX; = }: (155 * pcunuj) (2.4).
}

Such intervals for different actions will, in general, overlap. No
generally accepted method for choice of actions has yet been developed,
althowgh minimax techniques have been explored by Kyburg and Levi.

We conclude this section with a brief summary of the convex Bayesian
approach (Table II-2). This table may be compared with similar tables for

the other approaches,
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TABLE II-2
SUMMARY OF CONVEX BAYESIAN APPROACH

[ e Bba
’

e
.

® Background Elements

- Algebra of gstatements
- Convex set of probability functions defined over algebra of

- statements
e -- Utility function (not yet defined).
- ) Observation Reports
‘,:\.
- -~ Statements in the algebra.
- ™ Updating Mechanism
- via Bayes' Theorem, calculate posterior probabilities based
on prior and conditional probabilities. 1In symbolic form,
3o
‘. pp(S;) PLE,/S))
N Pr(Si/Ej) = mememe e ————— ’
. 3 P.(s) pr(r::j/sk)
k
.
[
where Pr is the t'th member of the convex set of probability
n functions.
- ° Decision Mechanism
W
- - Upper and lower probabilities for some statement in the
algebra can be taken from the convex gset of P (S./E.), but

x

no general procedure exists to handle these in a utllity
function. Presumably the decision indicated is the one that
maximizes this utility using the convex set of Pr(si/Ej)'
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3. Approach 3: Dempster-Shafer

Background Elements

. a. .

The background in this approach, like the first two approaches,

consists of three elements: (1) an algebra of statements, (2) a mass
N function defined over this algebra, and (3) a utility function defined over

the same algebra. The algebra defines the domain of discourse, the mass

function assigns degrees of belief to elements of the domain, and the fi;
utility function provides a means of reaching decisions in the domain. It -
should be noted that the utility function has received little attention in o

this approach, but will be required in practical applications.

The Dempster-Shafer approach also uses an LT algebra consisting of A
base elements, operators, and propositions entailed by application of the

operators to the base elements., The base elements are again assumed to be

mutually exclusive, We shall continue to refer to the mutually exclusive -

T:> elements as base elements and to the legal statements as atoms. -t
The mass function serves as the basic vehicle for assignment and i:

- manipulation of deqrees of belief, Mass is distributed across the set of 5
subgsets of the elements of the domain of discourse, that is, over the set § E;

b of (2 exp 2") propositions constructed from the 2" atomg that were in turn ?3
constructed from the n base elements, o

l-\"'

ll The mass function m, for subset Ai of S has the following properties N
. ,-_:‘
(S4):

i

t' mT(Ai) is a real number on [0,1] j{?
P -
: m (null set) = 0 W
o~

S

: S om (A = . i
. i e
; i 3
> e
- -3
J- T
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The value of M1(fi) is taken to be the weight of belief that is ascribed

N
$* 4

just to fi. The fi for which M1(fi) is nonzero are called focal elements

£ |
:

of My Since S is itself a member of S, M1(S) describes the weight of
belief unassigned to any smaller subset of S; this may be termed the

uncertainty.

This approach provides two measures of belief state for a given

proposition Q: support (SPT) and plausibility (PLS). They are calculated

|

b as follows (B2, $4):

L

< SPT1(Q) = E M1(fl) (3.1),

i f1cQ

: PLS,(Q) = 1 - > M, (£,) (3.2),
i = 1 - SpT,(~0Q) (3.3).
i The support for Q is thus the sum of the mass attributed to all subsets of

Q, while the plausibility of Q is one minus the support for the negation of
p Q. The plausibility can also be expressed as the sum of the mass
{

attributed to all subsets of S that contain some element of Q. It follows
that the plausibility of Q is always greater than or equal to the support
for Q.

The belief state concerniny Q can be written as an interval using
SPT(Q) as the lower endpoint and PLS(Q) as the upper. Some authors

describe this as an interval-valued probability on Q (D2). Kyburg has

shown (K4) that closed convex sets of classical probability functions can
represent belief states in a fashion that includes the mass-function

representation as a special case.

The background also contains means of translating observation reports 7755

[ ot
Lx into mass functions. One method is that of a mass-function distribution; l;;f
N DR
this distribution provides a normalized measure of the mass to be assigned ':JJ

‘; to each element of the domain in the event of each possible observation, [E;i
B

e
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Figure II-4 shows a set of such distributions in schematic form. These are

clearly analogous to the class-conditional functions of standard probabiiyy

theory. - A,%

¥ b. Observation Reports

Observation reports, at least to the extent that they are expected to

mesh with mass-function distribution, consist of statements like the

following:

Lol

St - "The brightness of object X is between 1.2 and 1.6."
b S2 - "Object X is surrounded by between 2 and 6 objects of
- similar brightness.” L

Proponents of this approach assert that it is not limited to the handling

of data based upon observational statistics, so reports might also consist
of statements that embody knowledge that is not necessarily based upon

statistical data., An example of such a report is:

S3 - "In region Y, the expectation of encountering an object of
class C1 is much higher than that of any other class."

In any case the intent of the approach is that observation reports

determine mass functions via mass-function distributions.

It is to be noted that each type of observation report is taken to
generate a separate mass function. This presents no problem as long as it
is clear that the evidential impact of a given report is properly assigned
to some subset of the domain of discourse. However, how this proper
assignment is to be guaranteed is not a trivial matter., For example,

suppose we were to receive the following report:

S4 - "The R-brightness of object X is between 102 and 108."

If our domain of discourse were constructed to deal only with reports on
brightness of an object, the brightness of its nearest neighbors, and the

expectation of encountering certain classes of objects in certain regions,

I1-25
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then we would not know what to do with this report on R-brightness,
Clearly, the domain of discourse would require restructuring if we intend

to make use of such reports,

This raises the question of what rules we should use in structuring
the domain of discourse. We want to ensure the inclusion of subsets that
can serve as recipients of mass from each and every obsarvation report that
will be received in performance of a given task. A general theory of the
development of such rules is an area of much current research and is beyond
the scope of this report. However, several practical insights on this
topic will emerge from our discussion of sample image-analysis tasks in

Chapter III.

c. Updating Mechanism

Suppose that we have received two observation reports that have
individually engendered mass functions M1 and M2. We combine M1 and M2 to

form a new mass function, M,,, defined over subsets of the domain of

discourse (S4). 1In symbolic form,

"M (£) M_(f,
2: 1 i 2 1)
(f) = (304)!
1.2 MLE) M, (£)

where the first summation, 2:', is over all fi and fj such that (ffﬂ\fj) =

1 while the second summation, 2:", is over all fi and fj such that

(£, ™ £.) = null.
1 J

The updating procedure first assumes that a current mass function, M,.
is available. Then it assumes that a new mass function, MZ' has been
presented., Finally it combines M, and M, to form M12, and uses it as the
current mass function should other new magss functions be presented. Figure

I1I-5 gives an overview of this process,
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M2lQy) SPTq2 (Q)
(MLt CALCULATE CALCULATE CALCULATE
b M12(Qy) h_'_" SPTy2 (Q) =~ ’ PLS12 (Q)
(M)

PLSq2 (Q)

SPT12(Q) <P (Q) <PLSq2 (Q)

FIGURE II-5.
OVERVIEW OF DEMPSTER-SHAFER UPDATING

d. Decision Mechanism

The type of decision mechanism compatible with the Dempster-gShafer

approach is not currently known. Support and plausibility functions for
each statement in the domain of discourse can be calculated based upon the
current mass function. These may be used as upper and lower bounds upon
the probability of each statement, but there is as yet no accepted, general

mechanism for decision-making based upon these bounds.

If we attempt a construction parallel to the classical and convex
Bayesian approaches, the difficulties become apparent. As before, we

formulate the expected loss of the ith action as follows:
= * .
EL; > (lij PCUR; ) (3.5),
3

where the summation is over the j states of nature, If we construe PCURj

as an interval bounded by SPT(Qj) and PLS(Qj), then we might say that I:‘.L.1 N

lies between ELMIN; and ELMAX,, where

II-28

et Ao sttt _Bad Jheih S o Bk bk At A e S ARl Ardh A T i e i n G Y s

-

e
WU WP}




r-nvf‘r‘v'v“c—vrwr\l.-"!\\"\."‘c‘ Dl ie~ Al e Ml YoM S N iR Sl S Gl Sl B M e R e e e - Chiiali Chiba e Alnl g RN |

s,

I3

.

EIMING = 3. (1ij * SPT(Q)) (3.6),
3

3

ll For different actions, these intervals will, in general, overlap.

If the decision function is simply to chose, whenever a decision is
required, the action that gives the minimum value of ELj, it is not clear
in this case how to determine the action that conforms to this decision
rule, Some simplification may be obtained by partitioning the set of EL-
intervals into those that might include the minimum and those that will
not, but there remains the problem of choosing the appropriate interval
[i from the candidate subset. An analogue of mixed strategies may be useful,

but this remains an open question for research.

- Table III-3 provides a brief summary of this approach. It may be

compared with similar tables for the other approaches,

4. Approach 4: Kyburg

a. Background Elements

!l The background in this approach, like others already discussed,

consists of three elements: (1) an algebra of statements, (2) a

probability function defined over this algebra, and (3) a utility or loss

Ir' "l‘

s function defined over the same algebra. As before, the algebra defines the

wor

domain of discourse, the probability function assigns degrees of belief to

s
o elements of the domain, and the utility function provides a means of
reaching decisions in the domain, =7
if The Kyburg approach also uses an LT algebra consisting of base ff:
elements, operators, and propositions entailed by application of the _!!

operators to the base elements., As before, the base elements are assumed .:!

to be mutually exclusive, so application of the disjunctive operator

expands them into the set of all possible legal statements about the domain

of discourse.
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TABLE II-3
SUMMARY OF DEMPSTER-~-SHAFER APPROACH

Backyround Elements

- Algebra of statements, AS-1

- Mass function M1 defined over subsets of AS-1

Observation Reports

- Mass function M2 defined over the subsets of another algebra
of statements, AS-2.

- This mass function can sometimes be decomposed into mass
supporting statements in AS-1 and mass supporting the set of
all subsets of AS-1.

Updating Mechanism

- Combine M, and M2 to form a new mass function, M12, defined
over subsets of AS-1. In symbolic form,

2:' M1(fi) Mz(fj)

1 -Z" M1(fi) Mz(fj)

where the first summation,i:', is over all fi and fj such

that (fi/\ fj) = fk' while the second summation, 'Y, is

over all fi and fj such that (fi/\ gi) = null,

- This formula is used as follows:

oe Assume that a current mass function, M1, is available,

ee Assume that a new mass function, M,, has been
presented.

o0 Combine M, and M_ to form M__, and use it as the
current mass function shoulézother new mass functions
presented.

Decision Mechanism

- Support and plausibility functions for each gtatement in AS-
1 can be calculated based upon the current mass function.
These may be used as upper and lower bounds upon the
probability of each statement, but there is as yet no
general mechanism for decision-making based upon these
bounds.




Ll S 1 i e S T Al -l i el et Jhalh Yl < Ve . .. - Tl L - Pl ]

Direct inference refers to the manner in which knowledge of chances

{(or frequencies, or objective probabilities) influences belief states about .

.! the outcomes of trials involving chance setups. 1In Kyburg's approach, some e
- portion of the algebra of statements has the status of a body of knowledge
containing statements about relative frequencies of occurrence of various -

characteristics in various classes. _ o

Kyburg offers a principle of direct inference that allows the
assignment of precise or imprecise p-values to hypotheses based upon
b knowledge of frequencies without requiring the assignment of precise prior
p-values, Adoption of his principle of direct inference may provide

v support for the use of Fisherian fiducial inference,

The concept of probability embraced by this approach is
epistemological. This means that probability is actually a descriptor of
credibility relative to some body of knowledge, 1In addition, the p-value

v used in this approach is an interval on [0,1]. L]

We will use a concrete example as the basis of our discussion of the
il Kyburg approach. The body of knowledge is taken to consist of the .
following statements:
o ) The fraction of members of class C; that have property P lies in
' the interval [L1,U1].

) The fraction of members of class Cy that have property P lies in o
’ the interval [L2,02].

° The fraction of members of class C,, that have property p lies in S
- the interval ], where class C is the intersection of e

g classes C, and &2 12 he

The hypothesis of interest is that an item selected from class C,, has |

property P. o

In order to show how to apply Kyburg's direct-inference principle, we 3}

. require a means of determining which evidence is relevant to a given s
statistical hypothesis and which is not, We shall use two terms, K-

< relevance and K-irrelevance, to this end.

v

! ~
o~ :
0'_'
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K-irrelevance refers to a mandatory lack of impact of a given piece of
information on our deliberations concerning the credibility of a certain
statistical hypothesis, The information concerning Cy in the body of
knowledge is K-irrelevant if and only if the following conditions are

fulfilled:

® The current body of knowledge implies that [L1,U1] is either a
subinterval of, or identical to, [L12,U12].

° The current body of knowledge implies that [L1,U1] is either a
subinterval of, or identical to, [LZ’UZ]'

In our example, if the information concerning C, is K-irrelevant, then the
information concerning Cy is the total information K-relevant to the
hypothesis,

K-irrelevance is thus a formal criterion that tells us whether or not

knowledge of a specific relative frequency should influence our degree of

belief that a member of Cyo has property P. For example, we might know

that:
° The fraction of Swedes who are Protestant lies in [a, b].
® The fraction of visitors in Lourdes who are Swedish lies in
[c, 4.
) The fraction of Swedish visitors to Lourdes who are also

Protestant lies in [e, f].

We might then be interested in finding the appropriate degree of belief to
attach to the hypothesis that a particular person is a Protestant, given
that we know that he is a Swedish visitor to Lourdes, Intuitively, we know
that the values of a, b, ¢, 4, e and £ will influence this degree of

belief. K-irrelevance formalizes this process,

Kyburg's principle of direct inference has a simple form, once the

criterion of K-irrelevance has been applied to the body of knowledge., It

states that, if the information concerning C1 is the total information K-

relevant to the hypothesis, then the degree of belief to be assigned to the
hypothesis is just the interval [L1,U1].
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The upshot of this process is that the Kyburg approach recommends, in

MR o A

many cases, that different intervals of degrees of belief be embraced.

This has the consequence that the evolution of p-values as evidence

n |

accumulates follows a different trajectory through the space of belief

- states, That this different trajectory may have important practical impact
seems reasonable, but remains to be demonstrated in a systematic fashion.

-

o b. Observation Reports

:- Observation reports in this approach can again be construed as

‘ statements in the algebra. When coupled with appropriate knowledge of

N relative frequencies, they assign new p-values to elements of the

o - algebra. Such assignments explicity refer to interval-valued p-functions.

" There is just one form of report in this approach:

o

° Each obgervation report consists of the identification of the
class or classes to which the observed object belongs. Xnowledge
of relative frequencies then determines how to assign two p-
values in the interval [0,1] to some element in the algebra.

; These are construed as lower and upper p-values for the element,

an updating mechanism to handle such reports is available, but, as in other
Lﬂ approaches using interval-valued p-functions, the decision mechanism is an

r area of ongoing research.

C. Updating Mechanism

s The Kyburg approach mandates the use of a unique updating mechanism:

the principle of direct inference discussed above., In some special cases,

this gives results that can be obtained from Bayes' Theorem. Legal

}f applications of the theorem are possible when the body of knowledje E:
contains statements like: 3

"N

. S1 - The fraction of members of class Cj that have property P lies o
in the interval [Li'Ui]‘ é!

These gtatements must be based on knowledge of relative frequencies of

P Iy )

R i el
. IS

occurrence of properties in real sets of objects or events. Furthermore,

for each hypothesis being considered, the appropriate sorting of the

i

alaa

’
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elements of the body of knowledge into those that are K-relevant and those

that are not must take place.

Given these conditions, the application of Bayes' Theorem proceeds in
a manner analogous to that of the convex Bayes approach, The principal
difference is that the size of the convex set of p-functions calculated
using intervals alone usually will be smaller than the set of functions

considered in the explicitly convex approach,

d. Decision Mechanism

The Kyburg approach offers interval-valued p-functions, As has been
discussed above for both the convex Bayes and Dempster-Shafer approaches,
there is currently no general decision mechanism available for interval-

valued p-functions.

We close this section with a summary of the Kyburg approach (Table II-

4). This may be compared with similar summaries for the other approaches.

5. Approach 5: Neyman-Pearson

a. Background Elements

We focus here on the body of theory developed by J. Neyman and E,
Pearson to deal with the testing of hypotheses. We shall discuss several
important features of this approach: first, the nature of the hypotheses
being assessed; second, the means by which evidential weights are developed
for each hypothesis; and third, the means by which the decisions are made

on the bagis of the weights.

The hypotheses treated by this approach are statistical in nature.
That is, they concern the behaviour of observable random variables. Some

authors, however, 4o not explicitly restrict the hypotheses in this

fashion.

L LA g Aus g Sat and Wil G Sk Sad i Sh S S Sl A S M- G - Sl G Ar ot A e o g0 BN b ae B 0SS snen Sak - s R R ac e S alne




TABLE II-4
SUMMARY OF KYBURG APPROACH

Backyround Elements

- Algebra of statements a
- Body of knowledge defined over subsets of the algebra ﬁ

- Criteria of relevance concerning statistical hypotheses, %

Observation Reports

--  Each observation report consists of the identification of h
the class or classes to which the observed object belongs.
Knowledge of relative frequencies then determines how to
assign two p-values in the interval [0,1]) to some element in
the algebra, These are construed as lower and upper p—
values for the element.

Updating Mechanism

- Apply criteria of relevance to elements of the body of
knowledge

- Apply principle of direct inference as appropriate

- Bayes' Theorem may be applied in certain cases involving
knowledge of relative frequencies of occurrence of
properties in real sets of objects or events.

Decision Mechanism

- Interval-valued p-functions are derived for statements in
the algebra. These may be used as upper and lower bounds
upon the probability of each statement, but there is as yet
no general mechanism for decision-making based upon these
bounds.
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. We may divide this approach into three segments. 1In hypothesis
testing, we reason from observations to conclusions about whether the state
I' of nature falls into one of two categories, and then chose one of two rﬁ.

actions. 1In estimation, we reason from observations to conclusions about .

| whether the state of nature falls into one of n categories (n > 2), and s
then chose one of n actions that lie in one-to-one correspondence with the .
!’ gstates of nature. 1In confidence-interval generation, we reason from
obgervations to conclusions about the set of categories in which the state
. of nature falls, and then chose one of geveral actions. The size of the

v gset of categories is determined by the confidence level, L, such that,

presumably, the set is larger the closer I is to unity. The size of the
gset is also determined by the nature, the number, and possibly the sequence

of the observations in a way that must be specified for each application,

The major elements of the backyround are an algebra of statements and

set of confidence intervals. The algebra of statements defines the domain

of discourse in a manner similar to that of the approaches discussed
above., The confidence intervals provide the linkage between observation
reports and the correlate of p-values to be assigned to statements in. the

algebra. These values will, in general, also be intervals,
The confidence intervals are to be constructed as follows:

e For a possible value, x_, of some parameter, X, in the domain of
discourse, construct the get of values of some other parameter,
Z, that constitute a test of significance level (1-1L) that X has
the value x_.., Call this set of Z values the acceptance set for

X, on 7 and denote it by AS(z: x = xo).

® Repeat this procedure for all other possible values of X to
obtain the set of all acceptance sets for x; on 2, Aas(z: x =
X.) . This set of acceptance sets can be visualized as creating
envelope in the X-Z plane as shown in Figure II-6.

° From this envelope find the set of values of X that would not be
rejected by observation of value zZ, for Z. This is the
confidence interval of level L for X on zo, denoted by CI(x: z

= 2 .
O)
The confidence coefficient that the interval so constructed contains the
actual value of x is then taken to be I,., We may, with caution, correlate

the confidence coefficient with the p-value discussed in other
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i FIGURE I1-6.
’ CONFIDENCE-INTERVAL CONSTRUCTION
b
[
p The confidence coefficient that the interval so constructed contains the
actual value of x is then taken to be L. We may, with caution, correlate
'El:f the confidence coefficient with the p-value discussed in other
.
approaches. The set of all confidence intervals of level L for X on z; may
"" be termed the confidence set for X on 2, denoted by CI(x: z = ZO).
Other parameters in the domain must also be addressed. That is, one
) must: (1) repeat these steps for all other possible parameters that can
. constitute tests for X, and (2) repeat these steps for all other parameters
L. in the domain of discourse that stand in the relation of testing as do X
and Z.
I1-37
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Examples of pairs of X-like and Z-like parameters might include:

° Z - The position of the pointer on an analog voltmeter
X - The steady-state value of the voltage in a certain circuit
° Z - The brightness of a certain pixel
X - The strength associated with the assignment of a pixel to a
certain class.
Clearly, the nature and number of such pairs will influence the complexity

of the updating process.

b. Observation Reports

Observation reports are statements in the algebra. They refer to
parameters like Z that have been identified during construction of the

confidence sets.

There are two possible interpretations of the content of observation
reports that could be addressed using this approach:
) Each report consists of the assignment of a single p-value of 1.0

to some element in the algebra of statements that corresponds to
a single value of the observation parameter

° Each report consists of the assignment of a single p-value of 1.0 AERER

to some element in the algebra of statements that corresponds to R

a range of values of the observation parameter. N
It was apparently the first of these interpretations that was of concern to NENE
the developers of this approach. :?ﬁi\
:_.‘_:. :.\

The second interpretation may offer a means of dealing with {{j}ﬂ
uncertainty in observation reports. For example, suppose we are dealing jfjﬁ]
. ',‘:

with reports similar to the following:

R1 - "The degree to which this feature resembles an edge lies between
8 and 9 (on a scale of 10)."

Assuming that the confidence sets have been constructed appropriately, then

the ends of the reported interval, z, and Zy0 could be used to locate two
dif ferent confidence intervals, CI1(x: z = 21) and CIz(x: z = 22). The

confidence interval to be used with the given operation might then be taken
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g to be that defined by the minimum and maximum values of x found in the :&;i
. interval obtained by combining CI1 and CI2. ;{;E
‘ It is not clear, however, whether it is possible to carry through the {M

N construction of confidence intervals using the second interpretation. : if
;‘ Clearly, the envelope must be of the simple shape depicted in Figure 11-6 f;';
v for this interpretation to be applicable. More importantly, the proper ?ni'
- construction of tests of significance level (1-L) under these conditions i

t; remains a question for further research. :i:;

W ::::_'::
£} c. Updating Mechanism POt
r There are two updating mechanisms available in this approach. First,  ﬂ“
;_ updating can occur as a result of a report concerning additional

R observations of the same 2-like parameter. Second, updating can occur as a

o result of a report concerning observations of other Z-like parameters. ~

With regqard to the first mechanism, the confidence set described in
section (a) can be construed as a family of nested curves that define a
region in the X-2Z plane that grows smaller as additional observations are
made. This means that an observed value of Z determines a smaller
confidence interval when more observations, rather than fewer, have been ;}Q

made . “. A

In this case the updating proceeds as follows:

° Receive observation report that gives the value of 2

) Determine the number of observations of this type and use the sl
curves in the confidence set corresponding to this number R

® From these curves, determine the limits on X to confidence level vt
L.

It is clear that this mechanism can be applied to certain cases of

evidential reasoning, particularly those that involve sampling from
populations that can be regarded as examples of well-defined statistical =T
distributions. The degree to which the mechanism can be applied to

situations that do not entail such distributions is not clear.
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The second updating mechanism operates in a fashion similar to the
first, except that the receipt of reports on two Z-like parameters now
requires that the confidence intervals from these two parameters be
integrated. How this is to be done 1s, to the author's knowledge, not
addressed by practitioners of this approach. Perhaps the answer lies in
the construction of the algebra of statements so that all relevant
combinations of Z-like parameters are represented by appropriate confidence

sets.

It should be noted, for both mechanisms, that it is not the p-value of
X that changes as new reports are received; this p-value is fixed by the
choice of L. The change induced by new reports is in the limits of the
confidence interval that is believed, with a p-value of L, to contain the

actual value of X.

d. Decision Mechanism

The Neyman-Pearson approach, as here described, provides us with p-
functions of value L on statements concerning intervals within which
parame ters may fall. If the algebra and the actions have been constructed
with this in mind, it may be possible to map preferred actions to intervals
in the X domain. In that case, the choice of action is clear if the
confidence interval on X coincides with one of the action intervals.
However, the intervals will not coincide in general, and the appropriate
choice of action is problematic. Weighting of the loss factors by measures
of interval overlap (in addition to the confidence level) may be feasible,

but will not be pursued here.

We conclude this section with Table II-5., This presents a brief

summary of the Neyman-Pearson approach.
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TABLE II-5
SUMMARY OF NEYMAN-PEARSON APPROACH

Background Elements

Algebra of statements

Confidence intervals of level L defined over subsets of the
algebra.

Observation Reports

Each report consists of the assignment of a single p-value
of 1.0 to some element in the algebra of statements that
corresponds to a single value of the observation parameter.

In some cases, the element of the algebra may correspond to
a range of values of the observation parameter, rather than
a single value.

Updating Mechanism

For additional observations of the same Z-like parameter:

[ 1) Receive observation report that gives the value of 2Z.

[ 1) Determine the number of observations of this type and
use the curves in the confidence set corresponding to
this number.

1) From these curves, determine the limits on X to
confidence level L.

For observations of different Z-like parameters, the
procedure is presumably similar if the algebra of statements
has been constructed so that all relevant combinations of 2-
like parameters are represented by appropriate confidence
sets.

The change induced by new reports is in the limits of the
confidence interval that is believed, with a p-value of L,
to contain the actual value of X.

Decision Mechanism

Single-valued p-functions are derived for statements in the
algebra concerning intervals that are believed to contain
the actual value of X. 1If actions have been defined in
terms of intervals of X, the preferred action will be clear
if action and confidence intervals coincide. If they do
not, weighting based upon measures of interval overlap may
be feasible.
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6. Approach 6: Possibility

a. Background Elements

The background in this approach consists of three elements: (1) an
algebra of statements, (2) degree-of-membership functions defined over this
algebra, and (3) a set of fuzzy decision functions defined over the same
algebra. The algebra defines the domain of discourse, the membership
function assigns degrees of membership to elements of the domain, and the

decision functions provide a means of reaching decisions in the domain.

The degree-of-membershi,: function is defined in terms of a fuzzy
set. Such a set is made up of ordered pairs that assign a degree of
membership in the fuzzy set to each value of a given characteristic. There
is one specific characteristic associated with each set. The fuzzy set is

then denoted by

A= {x;[p;},

th

where Xy is the i value of the characteristic and Py is the degree of

membership of X, in the fuzzy set.

In Zadeh's fuzzy logic, p-values obey the following axioms (G1, 22):

0 < p(x) <1

pl~x) = 1 - p(x)

p{x N\ y) min{p(x),p(y)]

plx v y) max[p({x),p(y)]
p{x =-> y) = min {1,[1-p(x)+p(y)]}

p(x = y) = min {{1-p(x)+p(y)],[1+p(x)—p(y)]}.

The last four axioms constitute strong truth functionality (Gi1, p.55).

The background also contains definitions of fuzzy predicates
appropriate to the domain of discourse. These are statements that

establish the degree of membership in a fuzzy set as a function of some

II-42




e ]

characteristic of an object. For example, the following statements define

the fuzzy predicate for low reflectance (LR) based on values of the

reflectance:

81 - "A reflectance of 0.0 is low with degree 1.0."

S2 - "A reflectance of 1.0 is low with degree 0.8."

S3 - "A reflectance of 2.0 is low with degree 0.4."
S4 - "A reflectance of 3.0 is low with degree 0.2."
S5 - "A reflectance of 4.0 is low with degree 0.1."

The fuzzy set would then be represented by

1R = {o[1.0, 1]0.8, 2|0.4, 3|0.2, 4]0.1}.

b. Observation Reports

Observation reports in the possibility approach provide the raw
material for assignment of degrees of membership . That is, they are
statements that establish the degree-of-membership value of a
characteristic of an object. Application of the membership function then

determines the degree of membership of that object in the fuzzy set.

For example, suppose that statements S1 through S5 above define the
low-reflectance fuzzy set. The following report would establish the degree

of membership of Z in the class of low-reflectance objects as 0.8:

S6 - "The reflectance of object Z is 1.0."
Note that the algebra is here construed as operating on the LR predicate,
not on the reflectance values. The number of fuzzy predicates is an

important determinant of the size of the algebra of statements.

c. Updating Mechanism

The possibility approach combines evidence in the following fashion.

Suppose we desire to classify a certain object into one of n classes,
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e Cj.++Cpn. Based upon evidence E;, we develop membership functions pq4

» through p1n to form the fuzzy set
A, = {°1'P11' °2|P12'~"' °n|P1n } .

Similarly, for evidence E2,

Ay = {°1|Pz1' czlpzz""' °n|92n} .

We combine k sets of evidence to obtain

B(k) = fo, [p), s e |ptk)yreees o 0O}

where the p(k)1,..., p(k)rl are integrated membership functions for each of

the n classes., These are obtained from

P(k)j = Dxxx(p1]" pzj,---, ij) (601)'

where D is one of several alternative fuzzy decision functions:

XXX
Dint(p1j'o.-’ pkj) = MIN(P1j,..-, pkj) ’ (6.2)'
k

Dpro(pﬁ”"' ij) = 11:1 pij (6'3)'

k k
Dcon(pﬁ'”" pkj) = E aijpij . ¢ 2 aij = 1) {6.4).

i=1 i=1
Use of Dint suygests that E1 and E2 interact in a a more or less independ-

ent fashion, and that the presence of a smaller p-value should be pre-
served. Use of Dpro SWgests that E, and E, interact like identical,

independent trials, so that repetitive observations cause marked changes in

Y

DN
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relative values of membership. Use of D.on Suggests that E, and E2 inter-

n
act in a reinforcing fashion, so that membership is intermediate between

the two input values.

d. Decision Mechanism

The decision mechanism in the possibility approach is based upon the
concepts of the fuzzy goal and the fuzzy constraint. The essential idea is
that decisions are determined by the confluence of goals and constraints,

and that all three are expressible as fuzzy sets (B4).

For example, suppose that the domain of discourse has been constructed
to allow expression of goals and constraints in the same algebra of
statements, {81,..., sn}. Then the expression of goals would be embodied in

the fuzzy set

G = {S1|m1g, Sz|m2g,.-., Snlmng} (6.5).
The constraints would be embodied in a similar fuzzy set

C = {81‘m1c' Szlmzclnocl Sn|mnc} (606)0

The confluence of goals and constraints is expressed by the fuzzy set

DEC(G,C) = {s1jm1gc, S, maygereees Snl“‘ngc} (6.7),
where the m1gc""' mngc are integrated membership functions for the goals
and constraints. These are obtained from

=D (m, , m. ) (6.8),

m.
jgc XXX Jg Jc

is one of the fuzzy decision functions discussed above.

where Dxxx

The alternative decision functions now have only two arguments, but

function as follows:
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° Dint makes a component of the decision space reflect only the

lesser of the goal or constraint values

° Dro makes a component of the decision space reflect the product
o?rthe goal and constraint values
° Dcon makes a component of the decision space reflect the weighted

average of the goal and constraint values.

General criteria for the choice among these decision rules have not been

developed.

Once the confluence set, DEC(G,C), has been constructed, the guestion
remains as to which decision is indicated. Sewral procedures are followed
in the literature (B4, M2). The most notable are: (1) choice of the
action having the greatest DEC degree of membership, (2) choice of an
action that is a combination of all actions weighted according to their DEC
degrees of membership, and (3) choice of an action that is an equal mixture
of the two actions having the minimum and maximum DEC degrees of
membership. General criteria for the choice among these approaches have

not been developed.

we conclude this section with a brief summary of the possibility

approach (Table II-6).

r P




. el . PR .
e e e e PR R PP SR LT RIS
WP R T WP T WP T T WL LTS - o8 PRI S RS

TABLE II-6
SUMMARY OF POSSIBILITY APPROACH

Background Elements

- Algebra of statements

i A TR AR DM R A A T A NS S S | 1
XA

-- Fuzzy predicates defining degrees of membership on subsets

of the algebra.

Observation Reports

- Reports establish the value of a characteristic of an
object.

-- Application of the membership function then determines the

degree of membership of that object in the appropriate
predicate set.

Updating Mechanism

- Membership functions are combined via one of three
alternative decision functions:

Dint(P.‘j,ono, pkj) = MIN(p'j’...’ pkj)

X
Poro(Prjreesr Pyl = T Py

i=1

k k
Dcon(p1j""’pkj)= zaijpij ro | zaij = 1)

i=1 i=1

Decision Mechanism

- Decisions determined by the confluence of goals and
constraints expressed as fuzzy sets

- The confluence is also a fuzzy set obtained from the goal
and constraint sets via application of the fuzzy decision

functions

-- The decision is ordinarily indicated by the maximum value of
the confluence set, but other indicators are sometimes used.
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& D. COMPARATIVE ANALYSIS OF THE APPROACHES

1. General

!! From the discussion in Section C, we can identify several important

similarities and differences:

tf ° The structure, but not necessarily the content, of the algebra of
statements is similar across the approaches.

g |
°

All approaches, with the possible exception of the Neyman-Pearson
and Possibility approaches, depend on formulation of a loss
function to arrive at decisions,

-
4

E{ ) Structures given to belief states are significantly different.
: They may be points, intervals, convex sets, or fuzzy sets.

: ° Components of the updating mechanism differ significantly, but
v the approaches fall into three major categories: those that use
Bayes' Theorem exclusively (classical and convex Bayes), those
that allow its use under certain conditions (Kyburg) or use a

. derivative form (Dempster-Shafer), and those that do not use it
= at all (Neyman-Pearson and Possibility).

o ) The approaches differ in their treatment of confirmational

ta condi tionalization, direct inference, and committment to

< numerically precise priors (L2, p.369). These are discussed
below.

.' [ Components of the decision mechanism also differ. Extension of
the expected-loss technique from the case of point-valued belief
states to the cases of interval-valued or convex-set belief

i states may be possible, but precisely how this is to be done

Ve remains an open question. The fuzzy decision rules operating on
the confluence of fuzzy goals and constraints appear to be

R unigue.

We elaborate on several of these points below.

Et The belief states are characterized in the classical Bayes and Neyman-
Pearson approaches as single points on the interval (0,1). In the Kyburg,
Neyman-Pearson, and Dempster-Shafer approaches they are construed as sub-
intervals of [0,1]. 1In the convex Bayes approach they are construed as

‘ convex sets of functions in a space of (n-1) dimensions, where n is the

number of base elements in tpe domain of discourse.

|-
Ve The fuzzy-set approach is purportedly different in that it is
[

concerned with grades of membership rather than degrees of belief.

However, since it also computes numbers that are essentially p-values, the _q
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distinction between grades of membership and degrees of belief is less
important than it might seem at first glance. The real distinction lies in
the manner in which p-values are combined. It appears that p-values can be

either single points or sub-intervals of [0,1].

The approaches differ in the exercise of both direct and inverse
inference. Direct inference refers to the manner in which knowledge of
chances (or frequencies, or objective probabilities) influences belief
states about the outcomes of trials involving chance setups. There is a
group of direct-inference principles endorsed by various authors (L2,
pp.54, 250f), but they will not be discussed here. Inwverse inference
refers to the manner in which knowledge of the outcomes of trials involving
chance setups influences belief states about chances (or frequencies, or
objective probabilities). These are belief states concerning rival

statistical hypotheses (L2).

The key point is that rules governing direct inference are not
identical to rules governing inverse inference. The exposition,
clarification, and comparison of these rules is beyond the scope of the
current effort, but we may note that the convex Bayes approach differs from
the Kyburg approach. The former allows direct inference from beliefs,
frequencies, or knowledge of chances, while the latter prefers direct

inference only from knowledge of relative frequencies (L2, p.393).

The approaches also differ in terms of confirmational
condi tionalization. This refers to the manner in which belief states
change when there is a transition from an old to a new body of knowledge.
In its simplest form, confirmational conditionalization requires that the
same rule that generated the belief state based on the old body of
knowledge be used in the same way to generate the belief state based on the
new body of knowiedg2. The convex Bayes approach embraces confirmational
conditionalization, while the Kyburg approach does not. The Dempster-
Shafer approach apparently relies on its own form of confirmational

condi tionalization, called D-conditionalization.
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2, Points of Correspondence

The most salient point of correspondence is the dependence, in each
'E approach, upon an algebra of statements that sharply defines the domain of
discourse. This algebra is a fixed framework within which all observations

are interpreted, all updating occurs, and all decisions are made. None of

- 3

the approaches discussed here addresses the issue of a dynamic algebra that

r. adapts to changing real-world conditions.

A second point of correspondence is dependence upon definition of a
r1 loss function. This is explicit in all but the Neyman-Pearson and
- Possibility approaches, and may even be implicit in these. Certainly the

construction of appropriate loss functions is not a trivial matter, nor is

there an iron-clad general theory of utility functions available to guide
us. A third point of correspondence has recently been elucidated by

£= Kyburg. He has shown (X4) that the probability intervals resulting from
application of the Dempster-Shafer updating mechanism are included in the
intervals resulting from Bayesian updating on the same evidence. He has
also shown that closed convex sets of classical probability functions

provide a representation of belief states that includes the mass-function

representation as a special case.

3. Points of Incommensurability

A key point of incommensurability is concerned with whether Bayes'
Theorem can be used to calculate precise posterior p-values concerning the
outcomes of trials from prior p-values concerning such outcomes. The
Kyburg view is that this is acceptable only when precise or imprecise
priors based upon knowledge of frequencies are available via direct
inference. On this view, there are circumstances in which no legitimate
priors other than the entire interval (0, 1] are available; consequently,

there are circumstances in which Bayes' Theorem cannot be applied.

A second point of incommensurability is related to the structure of
belief states. In a certain sense, higher-order representations can

subsume lower-order ones., For example, convex sets may subsume intervals

and points. The reverse is not true, however. This suggests that lower-
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order representations may be sacrificing robustness in favor of

computational simplicity.

E. SUMMARY

The evidential-reasoning research reported in Chapter II can be

summarized as follows:

The evidential-reasoning problem can be formulated in terms of a
four-part paradigm. The component parts are the background
elements, the observation reports, the updating mechanism, and
the decision mechanism.

Each of the six major approaches can be expressed in terms of the
four-part paradigm.

Major similarities in the ER approaches are found in two

background elements:

- structure of the algebra of statements (but not necessarily
the content)

-- the loss function.

Major differences in the ER approaches are found in several
components: .

-- structures given to belief states (points, intervals, convex
sets, fuzzy sets)

- updating algorithms (Bayes' Theorem, Dempster's Rule,
principles of direct inference, confidence intervals, fuzzy
combination)

- decision algorithms {(expected loss on point-valued p-
functions, expected loss on intervals or convex sets, fuzzy
decision rules).
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III: APPLICATION TO EXPERT-SYSTEM TASKS IN THE DOMAIN OF
IMAGE ANALYSIS

A. INTRODUCTION

In Chapter II we formulated the relevant ER approaches in a parallel
fashion and arrived at a set of points of correspondence and points of in-
commensurability. 1In Chapter III we apply the ER approaches to several

important tasks for expert systems in the domain of image analysis.,

We shall limit ourselves here to discussion of image analysis or low-
level vision. The current effort also has application to scene analysis or
high-level vision, but exploration of these applications lies beyond the
scope of this effort. We shall consider the domain of image analysis to
include the identification of lines, edges, regions, and texture through
the level of the primal sketch (M2). We shall consider scene analysis to
be the recognition of objects and configqurations of objects based upon the

results of image analysis.

Image analysis here will be considered to be comprised of three inter-
related processes: feature extraction, segmentation, and domain classifi-
cation, FPeature extraction is the retrieval of relevant information from
the original image data. Segmentation is the division of the image into
several relevant domains, Domain classification is the assignment of each

domain to one of several categories,

There are three expert-system tasks to be addressed here: diagnosis,
integration, and control. The nature and importance of each will be des-

cribed in terms of image-analysis objectives in the next section,
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B. EXPERT-SYSTEM TASKS IN IMAGE ANALYSIS

There is growing evidence that the application of expert-system tech-
niques to image-analysis problems may be of significant utility (for exam-
ples, see references B1, G3, K2, M1, M2, N2, and W1). various algorithms
for attacking various components of this problem have incorporated specia-
lized heuristics to improve performance., The promise of additional
improvement via expert systems lies in applying several classes of such

heuristics in an integrated and adaptive manner to a single image,

While exploring the nature of the three major expert-system tasks in
terms of image-analysis problems, this discussion is not intended to be ex-
haustive in terms of either expert-system or image-analysis techniques.

Its intent is to serve as a vehicle for comparison the the evidential-

reasoning approaches described in Chapter II.

1e Diagnosis

Diagnosis is the inference of system behaviour from various data.
That is, based upon data about system processes, a description of the sys-
tem state is constructed, Figure III-1 is a schematic representation of

such a diagnostic task,

In terms of the component parts of the image-analysis process, diag-
nosis might include the following sorts of tasks:
® Assessment of the degree to which the image has been appropri-
ately segmented

) Assessment of the degree to which domains have been appropriately
classified

® Identification of those feature-extraction, segmentation, or
domain-classification components of the image-analysis system

that are not performing adequately in a certain context,
Detailed discussion of each of these tasks is beyond the scope of this

effort, but we will construct an example for use in the rdmainder of the

chapter. We will focus on the reqion-growing (RG) portion of seymentation,
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FIGURE HlI-1.
SCHEMATIC REPRESENTATION OF DIAGNOSTIC TASKS
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Sample Task I: Diagnosis

Objective: Diagnose the behavior of the RG component in the
segmentation portion of the IAS.

Assumptions: RG operates on features of intensity and intensity
gradient,

Inputs: Measures of the uniformity of each current region
Measures of strengths of current boundaries

Outputs: Statements concerning RG behavior, e.g.,
S1 - "The RG is merging too many pixels."
S2 - "The RG is merging approximately the right
number of pixels."
83 - "The RG is merging too few pixels."

Approach: (1) Assemble uniformity and boundary strength
measures.
(2) Infer support for hypotheses corresponding to
statements about RG behaviour,
(3) Select a statement for output.
Add: :ional inputs could be used in the diagnostic process if RG were to
operate on features such as color hue, color saturation, or region size.

Our current intent in use of the sample task is well served by limiting it

to the simple inputs described.

2. Integration

Integration may be interpreted as the meaningful combination of a
number of disparate inputs into a smaller number of outputs. For example,
given assignments of a characteristic to some object obtained via distinct
methods, combine the assignments to form one integrated assignment. Figure

III-2 is a schematic representation of such an integrative task.

In terms of the image-analysis process, integration includes the fol-

lowing sorts of tasks:

® Combining two or more classification maps into a single map

° Combining two or more feature vectors into a single vector prior
to classification,
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S Detailed discussion of these tasks is again beyond our current scope., The
example we will use in the remainder of the chapter will be concerned with

II the integration of the results of two different pixel-classification maps.
‘ Sample Task II: Integration

= Objective: Combine two pixel-classification maps into a single
i map.

Assumptions: Each map is classified into the same six classes,
(C1’oo.'c6)o

————
. .

Classification strengths have one of four values,
(S1,...S4).

-

Inputs: Two 1024 X 1024 classification maps in which each
pixel has been assigned to one of six classes,
Each assignment carries a strength.

Outputs: One 1024 x 1024 classification map in which each

pixel has been assigned to one of six classes.
Each assignment carries a strength,

. Approach: (1) Assemble classification maps.

. (2) Combine the following functions:

‘ M1(Xfy) = (Ci'sj)

" Mz(er) = (ci'sj) ’

) into a third function of the same form, M;,.

ID (3) Present M;, as the integrated result.

L As before, this task is purposely kept simple for clarity of analysis.

)

3. Control

Control may be interpreted as the choice of actions that influence
gsystem behavior. That is, based upon a description of system state, a -
decision process is followed that results in recommended actions designed ;i;
to bring system behavior closer td some goal state, Figure III-3 is a

schematic representation of control tasks,
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In the image-analysis process, control includes the following sorts of

tasks:

OF IMAGE-ANALYSIS SYSTEM STATE |

SCHEMATIC REPRESENTATION OF CONTROL TASKS

Determination of the appropriate features to be extracted based
upon the nature of the image data, the performance of components

of the
Choice
Choice
Choice

Choice

labeling techniques (ETL-0280, p.9).
Removal of artifacts at class boundaries (ETL~0300, p.19).

Coordination of cooperative algorithms (ETL-0305, pP.5).

R e o i S S M Vi VR S AN B Pl tai e o ta 1t “a L ea i Sull sl o el Sad G Sl il B Al RSt Rl Sl IR R SPUE I 'C'm
LT

DESCRIPTION KNOWLEDGE
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CONTROL
SYSTEM

RECOMMENDED IMAGE-ANALYSIS
CONTROL ACTIONS

FIGURE I11-3.

509-2-14-85-1

image-analysis system, and other relevant factors.,
of methods of component reduction (ETL-0343, p.7). :{}
of raster-processing techniques (ETL-0347, p.7).
of interest operators (ETL-0347, p.20).

of weights and compatibility values for relaxation-
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choice of rules for coordination of concurrent algorithms (ETL-
0298, p.20).

0of course, detailed discussion of these tasks is beyond our current

scope.

We will construct an example for use in the remainder of the

chapter that is concerned with the coordination of two algorithms, one

dealing with lines and the other with regions.
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Sample Task III: Control

Objective: Coordinate the application of two cooperative
image-analysis algorithms, line removal (LR)
and region splitting (RS)

Assumptions: LR and RS interact only via two rules:

R1 - IF region y is not small
& region y is bisected by line x
& line x is not short
& the average gradient of line x is high

THEN split region y along line x.
R2 - IF line x is incomplete
& the average gradient of line x is low
& region .y lies on both sides of line x,
THEN remove line x,.

The location of the system in state-space is
imprecisely known due to local, rather than
gdlobal, measurements on regions and lines,

Inputs: Measures on region y - size,
Measures on line x - completeness, length, average
gradient.

Measures between region y and line x - bisection.

Outputs: Recommended actions:
A1l Apply Rt to region y.
A2 - Do not apply R1 to region y.

A3 - Apply R2 to line x.
A4 - Do not apply R2 to line x.
Approach: (1) Assemble measures,

(2) Infer support for antecedents of R1 and R2.
(3) Select recommended action.
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It should be noted that we have constructed rules R1 and R2 so that the
antecedents cannot be simultaneously satisfied for both rules. This sim-

plifies the control task in that no rules to choose between R1 and R2 are

required. Rules about the use of other rules are often termed meta-

rules, Meta~rules can be constructed in much the same format as R1 and R2;

the application of the evidential-reasoning approaches would proceed in

m essentially the same fashion for such rules,

;i C. APPLICATION OF EVIDENTIAL-REASONING APPROACHES

Having identified three major categories of expert-system tasks and
constructed samples of such tasks, we are ready to explore the application
of the evidential-reasoning approaches to these sample tasks. In this

section, we outline application of each approach in turn, taking care to

‘ preserve parallel, step-wise treatments, We postpone discussion until

P Section D, where we compare the results. These outlines are designed to be
precursors of the pseudo-code required to perform computational experiments

= in subsequent work. It is clear, however, that they are here presented in

ll much simplified form in order to cover the great breadth of the current

- effort (6 approaches and 3 tasks).

1. Approach 1: Classical Bayes

C a. Sample Task I - Diagnosis

e application of the classical Bayes approach would proceed as follows:

R

.

-
2 «
Y

(1) Determine elements of the algebra of statements:

L

- - values of intensity for each relevant pixel

e - values of intensity gradient for each relevant pixel

[
e
PPN

- set of current regions

P
.

2

e - measure of uniformity for each current reqgion

"I. '..

- measures of boundary strengths,

PR
el

;f (2) Determine conditional p-values (point-valued).

'
:

(3) Determine a priori p-values (point-valued).

’
e
or .

ol

(4) 1Identify those statements having unitary p-values on the

basis of the input data,

[N
r—
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C
C:; (5) Apply equations (1.1) and (1.2) to obtain a
posteriori and current p-values.
! (6) Determine loss matrix.
(7) cCalculate the expected loss using equation (1.3)
s based upon the current p-values.
" {8) Select the diagnosis statement having the lowest expected
E_ loss.,
o b. Sample Task II - Integration
= Application of the classical Bayes approach would proceed as follows:
(1) Determine elements of the algebra of statements:
- 24 states of a pixel from Map 1, (C,y, S,)
- 24 states of a pixel from Map 2, (C2, S,5)
¢ - 24 states of a pixel from Map 12, (Cy,, 812)
. (2) Determine conditional p~values:
- - point-valued
_ - values fgr P[(C1,S1) (C2,Sz) ' (Cq ¢ 312)]
. - up to 24" such values, but presumably many are zero.
‘ (3) Determine a priori p-values,
- point-valued
-~ 24 values for Pprior[(c12' S12)]
'! (4) 1dentify those statements having unitary p-values on the
) basis of the input data.
- If each pixel is considered independently, just two ai
statements will have unitary p-values., ;g
— (5) Apply equations (1,1) and (1.2) to obtain a g!’

posteriori and current p-values,

- 24 values for Ppost[(clz' Sy2)].

R
i h'
-
(6) Determine loss matrix. "

(7) Calculate the expected loss using equation (1.3)
based upon the current p-values,
(8) Select the statement for the Map-12 pixel havingy the lower

expected loss.




N T

.
»

follows:

Sample Task III - Control

Application of the classical Bayes approach would proceed as

(1) Determine elements of the algebra of statements.
- Relative to the observation space:
-- r states of size measure on region y
-- g states of completeness measure on line x
-- t gstates of length measure on line x
-- u states of average-gradient measure on line x
-- v states of bisection measure on region y and line x
-- there are thus N states in 0S, the observation space.,
N is the product of r, s, t, u, and v,
-~ Relative to the control space:
-- 2 states for each of the five measures above
-- There are thus 32 states in CS, the control space.
{(2) Determine conditional p-values:
- point-valued
- values for P[OS; I cs;
- up to (32 x N) such values, but presumably many are zero.
(3) Determine a priori p-values.
- point-valued
- 32 values for Pprior[csi]'
(4) 1Identify those statements having unitary p-values on the
basis of the input data:
- For a given region/line pair, just one statement in 0OS
will have a unitary p-value,
{(5) Apply equations (1.1) and (1.2) to obtain a
posteriori and current p-values.
- 32 values for Ppostlcsi]
{6) Determine loss matrix.
(7) Calculate the expected loss using equation (1.3)

based upon the current p-values,

{38) Select the control action having the lower expected loss.
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e 2. Approach 2: Convex Bayes
‘.g a. Sample Task I - Diagnosis —
] =
Application of the convex Bayes approach would proceed as follows: o
§¢ (1) Determine elements of the algebra of statements. f'f
: - values of intensity for each relevant pixel :_;3
.i - values of intensity gradient for each relevant pixel *,4!
3 - set of current regions ‘*ij
o - measure of uniformity for each current region E}
ti - measures of boundary strengths, }Eﬁ
~ (2) Determine conditional p-values: .
‘ - intervals or convex sets, 3
(3) Determine a priori p-values: C
i' - intervals or convex sets. j
=

(4) Identify those statements having non-null p-values on the —_—

basis of the input data. s

o (5) Apply Bayes' Theorem to obtain a posteriori p-values: 5;-:
- must use interval or set form of theorem, equation -

' (2.1).

(6) Determine loss matrix.

ﬁl (7) Select the diagnosis statement via some decision function ;;ﬁ

that uses the loss matrix and the current p-values., S

b. Sample Task I1 -~ Integration e

i )
o Application of the convex Bayes approach would proceed as follows: s
(1) Determine elements of the algebra of statements: £
. 4
i - 24 states of a pixel from Map 1, (C4. 31) e

-~ 24 states of a pixel from Map 2, (Cz, S,) o

- 24 states of a pixel from Map 12, (Cqj» 812)-

(2) Determine conditional p-values,

o - intervals or convex sets

. - values for P[(C1,S1) (Cz,sz) (C12, 812)]

- there could be up to 24~ such intervals or convex

™) sets, but presumably many are null,
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(3)

(4)

(5)

(6)
(7)

C. Sample Task III - Control

Determine a priori p-values:

- intervals or convex sets

- 24 intervals or sets for Pprijor((Cia, Sy5)1]
Identify those statements having non-null p-values on the
basis of the input data.
- if each pixel is considered independently, just two
statements will have non-null p-values.
Apply Bayes' Theorem to obtain a posteriori p-values:
- 24 intervals or sets for Ppog[(C i, S )]
- must use interval or set form of theorem, equation
(2.1).
Determine loss matrix.
Select the statement for the Map-12 pixel via some decision

function that uses the loss matrix and the current p-values.

Application of the convex Bayes approach would proceed as follows:

(1)

(2)

Determine elements of the algebra of statements:
- Relative to the observation space:
-- r states of size measure on region y
-- 8 gstates of completeness measure on line x
-- t states of length measure on line x
-- u states of average—gradient measure on line x
-~ v gtates of bisection measure on region y and line x
-~ there are thus N states in 0S, the observation sgpace,

N is the product of r, s, t, u, and v.

- Relative to the control space:

-- 2 states for each of the five measures above .-

-~ there are thus 32 states in C§, the control space, -3
Determine conditional p-values: ] i!
3

- intervals or convex sets
- values for P[OSj Cs; ) s

-~ there could be up to (32 x N) such intervals or convex o

gsets, but presumably many are null. _
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}ﬁt (3) Determine a priori p-values:
~ intervals or convex sets
. ~ 32 intervals or sets for Pprior[CSi] .
(4) 1Identify those statements having non-null p-values on the

basis of the input data:

-~ for a given region/line pair, just one statement in 0OS
will have a non-null p-value.,
(5) Apply Bayes' Theorem to obtain a posteriori p-values,
- 32 intervals or sets for Ppost[csi].
- must use interval or set form of
theorem, equation (2.1).
(6) Determine loss matrix.
(7) Select the control action via some decision function that

uses the loss matrix and the current p-values.

3. Approach 3: Dempster - Shafer

a. Sample Task I - Diagnosis

Application of the Dempster-Shafer approach would proceed as follows:
(1) Determine elements of the algebra of statements:
- values of intensity for each relevant pixel
- values of intensity gradient for each relevant pixel
- set of current regions
- measure of uniformity for each current region
- measures of boundary strengths
(2) Determine mass functions for statements on the basis of
the input data.
(3) Apply Dempster's Rule using equation (3.4) if combination
of mass functions is required,
(4) Compute support and plausibility via equat.ons
(3.1) and (3.2) for hypotheses corresponding to
the diagnosis statements,

(5) Determine loss matrix,

III-14
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(6) Select the diagnosis statement via some decision function

that uses the loss matrix, the support function, and the

plausibility function,

b. Sample Task II - Integration

Application of the Dempster-Shafer approach would proceed as follows:
(1) Determine elements of the algebra of statements,
- 24 states of a pixel from Map 1, (C,, S,)
- 24 states of a pixel from Map 2, (C2, S,)
- 24 states of a pixel from Map 12, (Cqyps Sq,)
(2) Determine mass functions for statements on the bhasis of
the input data:
- 1f each pixel is considered independently, just two
statements will have non-null mass-functions,
{3) Apply Dempster's Rule using equation (3.4) if combination
of mass functions is required:
- combine the two non-null mass functions,
(4) Compute support and plausibility via equations
{(3.1) and (3.2) for statements corresponding to the states
of the Map-12 pixel,
(5) Determine loss matrix.
(6) Select the statement for the Map-12 pixel via some decision

function that uges the loss matrix, the support function,

et
.

and the plausibility function,

T

.

LA

LN Y
.

c. Sample Task III - Control

Application of the Dempster-Shafer approach would proceed as follows:
(1) Determine elements of the algebra of statements:
- Relative to the observation space:
-- r states of size measure on region y
-- s gtates of completeness measure on line x
-- t gtates of length measure on line x

-- u states of average-gradient measure on line x -

III-15
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(2)

(3)

(4)

(5)
(6)

~- v states of bisection measure on region y and line x gnj

-- there are thus N states in 0S, the observation space,
N is the product of r, s, t, u, and v.
- Relative to the control space:
-~ 2 states for each of the five measures above
-- there are thus 32 states in CS, the control space,
Determine mass functions for statements on the basis of
the input data:
- for a given region/line pair, more than one statement in
0S may have a non-null mass-function,
Apply Dempster's Rule using equation (3.4) if
combination of mass functions is required:
- combine the non-null mass functions,
Compute support and plausibility via equations
(3.1) and (3.2) for statements corresponding to the
control actions.
Determine loss matrix,
Select statement for the control action via some decision
function that uses the loss matrix, the support function,

and the plausibility function,

4. Approach 4: Kyburg

a. Sample Task I ~ Diagnosis

Application of the Kyburg approach would proceed as follows:

(1)

(2)

Determine elements of the algebra of statements,
- values of intensity for each relevant pixel
- values of intensity gradient for each relevant pixel
- set of current regions

- measure of uniformity for each current region

~ measures of boundary strengths —

Apply principle of direct inference,

- K-relevance

III-16




(3)

(4)

(5)

(6)

(7
(8)

Determine conditional p-values,
- intervals
Determine a priori p-values,
- intervals
Identify those statements having non-null p-values on the
bagsis of the input data.
apply direct inference to obtain a posteriori p-values,
Determine loss matrix.
Select the diagnosis statement via some decision function

that uses the loss matrix and the a posteriori p-values,

b. Sample Task I1 - Integration

Application of the Kyburg approach would proceed as follows:

(1)

(2)

(3)

(4)

()

(6)

Determine elements of the algebra of statements,
~ 24 states of a pixel from Map 1, (Cy, Sl)
~ 24 states of a pixel from Map 2, (C2, SZ)
- 24 states of a pixel from Map 12, (Cyy, 512).
Apply principle of direct inference.
~ K-relevance
Determine conditional p-values.
-~ intervals
~ values for P[(Cy,S,) (Cg,sz) (C1ys 812)]
- there could be up to 24 such intervals, but
presumably many are null,
Determine a priori p-values:
- intervals

- 24 intervals for P [(C12,

prior 512)]'
Identify those statements having non-null p-values on the
basis of the input data:
- if each pixel is considered independently, just two
statements will have non-null p-values,
Apply direct inference to obtain a posteriori p-values:
- 24 intervals for Ppogtl(Cy,r S, )]
- must use interval form of theorem,

e ..
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(7)
(8)

Determine loss matrix.

Select the statement for the Map-12 pixel via some decision
function that uses the loss matrix and the a posteriori

p-values.

Sample Task III - Control

Application of the Kyburg approach would proceed as follows:

(1)

(2)

(3)

(4)

(5)

Determine elements of the algebra of statements:
- Relative to the observation space:
-- r states of size measure on region y
-- s states of completeness measure on line x
-- t states of length measure on line x
-- u states of average-gradient measure on line x
-- v states of bisection measure on region y and line x
~-- there are thus N states in 0S, the observation space,
N is the product of r, s, t, u, and v,
- Relative to the control space:
-- 2 states for each of the five measures above
-~ there are thus 32 states in CS, the control space.
Apply principle of direct inference:
- K-relevance,
Determine conditional p-values:
- intervals
- vaiues for P[OSj Cs;]
- There could be up to (32 x N) such intervals, but
presumably many are null.
Determine a priori p-values,
- intervals
- 32 intervals for Pprior[csi]'
Jdentify those statements having non-null p-values on the
basis of the input data,
- for a given region/line pair, just one statement in 0S

will have a non-null p-value,

ITI-18
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(6)

(6)
(7)

Apply direct inference to obtain a posteriori p-values.

- 32 intervals for Ppost[csi]
- must use interval form of theorem,

Determine loss matrix.

Select the control action via some decision function that

uses the loss matrix and the a posteriori p-values,

Approach 5: Neyman-Pearson

a, Sample Task 1 - Diagnosis

Application of the Neyman-Pearson approach would proceed as follows:

(1)

(2)
(3)

(4)

(5)

(6)
(7)

Determine elements of the algebra of statements:

- values of intensity for each relevant pixel

values of intensity qradient for each relevant pixel
- gset of current regions
- measure of uniformity for each current region
- measures of boundary strengths
Choose confidence level, L.
Construct confidence sets for the diagnosis statements:
- interval-valued
Identify those observation statements having unitary
p-values on the basis of the input data.
Determine the current limits on the p-values of the
diagnosis statements via the confidence sets pertaininmg to
the observation statements identified in (4).
Determine loss matrix.
Select the diagnosis statement via a decision function that

uses the limits generated in (5).

b. Sample Task IT - Integration

Application of the Neyman-Pearson approach would proceed as follows:

ITI-13
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(1)

(2)
(3)

(4)

(5)

(6)
(7)
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Determine elements of the algebra of statements. S

- 24 states of a pixel from Map 1, (C1, S1)

- 24 states of a pixel from Map 2, (Cy, S,) -

- 24 states of a pixel from Map 12, (C,,, $;,) "
Choqse confidence level, L.

Construct confidence sets for the Map-12 statements. :';
- interval-valued. .
Identify those observation statements having unitary
p-values on the basis of the input data. K
Determine the current limits on the p-values of the .
Map-12 statements via the confidence sets pertaining to

the observation statements identified in (4).
Determine loss matrix.
Select the Map-12 statement via a decision function that

uses the limits generated in (5). -

C. Samople Task III - Control

Application of the Neyman-Pearson approach would proceed as follows:

(1)

(2)
(3)

Determine elements of the algebra of statements:

- Relative to the observation space:
~- r states of size measure on region y C
-- 8 states of completeness measure on line x
-- t states of length measure on line x
-- u states of average-gradient measure on line x
~- v states of bisection measure on region y and line x “ﬂf
-- There are thus N states in 0S, the observation space, |

N is the product of r, s, t, u, and v.

- Relative to the control space: .
-- 2 states for each of the five measures above ~
-~ there are thus 32 states in CS, the control space,

Choose confidence level, L.

Construct confidence gets for the control-space statements.

-~ interval-valued




o

r —
.- 4
kf (4) 1Identify those observation-space gtatements having unitary j}-j
p-values on the basis of the input data. ;iz:

(5) Determine the current limits on the p-values of the 557!!

control-space statements via the confidence sets pertaining j,f¥
to the observation-space statements identified in (4).

(6) Determine loss matrix.

(7) Select the control-space statement via a decision function

that uses the limits generated in (5),

6. Approach 6: Possibility

a. Sample Task I - Diagnosis

Application of the possibility approach would proceed as follows:
(1) Determine elements of the algebra of statements.
- values of intensity for each relevant pixel
~ values of intensity gradient for each relevant pixel
- set of current regions
- measure of uniformity for each current region
- measures of boundary strengths
{2) Construct membership functions,
~ two-element fuzzy sets linking parameters above to each
diagnosis statement
(3) Set values in the membership functions on the basis of the
input data.
(4) Combine the membership functions via one or more of the
fuzzy decision functions, equations {(6.3), (6.4), (6.5).
(5) Determine goal and constaint fuzzy sets via equations
(6.6) and (6.7).
(6) Form the confluence set, DEC(G,C) via equation (6.8).
(7) Select the diagnosis statement having the highest

DEC degree of membership.
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b. Sample Task II - Integration
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Application of the possibility approach would proceed as follows:

(1)

(2)

(3)

(4)

(5)

(6)
(7)

c. Sample Task III - Control

Determine elements of the algebra of gtatements.

Construct membership functions.

Set values in the membership functions on the basis of the

- 24 states of a pixel from Map 1, (C1, S1)
- 24 states of a pixel from Map 2, (C2, S2)
- 24 states of a pixel from Map 12, (C12, S$12)

- 24 two-element fuzzy sets linking Map-1 and Map-2

parameters to each Map-12 statement

input data.

Combine the membership functions via one or more of the
fuzzy decision functions, equations (6.3), (6.4), (6.5).
Determine goal and constaint fuzzy sets via

equations (6.6) and (6.7).

Form the confluence set, DEC(G,C) via equation (6.8).
Select the Map-12 statement having the highest DEC degree

of membership,

Application of the possibility approach would proceed as follows:

(1)

Determine elements of the algebra of statements:

Relative to

--r
-- 5
-t
--u

-—v

-~ There are thus N states in 0S, the observation space,
N is the product of r, s, t, u, and v,

Relative to the control space:

-- 2 states for each of the five measures above

-- There are thus 32 gtates in CS, the control space,

states
states
states
states

states

the observation space:

‘of

of
of
of
of

size measure on region y
completeness measure on line x
length measure on line x
average-gradient measure on line x

bisection measure on region y and line x
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(2) Construct membership functions:

- 32 N-element fuzzy sets linking observation-space

" parameters to each control-space state
(3) Set values in the membership functions on the basis of the

' input data.

(4) Combine the membership functions via one or more of the o
! fuzzy decision functions, equations (6.3), (6.4), (6.5). ---!
‘ (5) Determine goal and constaint fuzzy sets via equations (6.6) .
and (6.7). 5]
ﬁi (6) Form the confluence set, DEC(G,C) via equation (6.8). ;i

;

=4
. (7) sSelect the control action having the highest DEC degree .<J’
: of membership. ]

D. COMPARATIVE ANALYSIS OF THE APPLICATIONS

ﬂ} From the foregoingy definition of sample tasks and parallel, step-wise
application of theoretical approaches, we can make the following compara-

tive observations: Lo

) The diagnosis and integration tasks do not lend themselves to
formulation of loss or utility functions as readily as the con-
trol task., This occurs because the former tasks, at least when

considered in isolation, do not ordinarily incorporate conge- }}

quences of decisions in their formulation., 1In a sense, they do ;;;j
not make explicit the impact of Type-I and Type-II errors., This

difference in tasks may favor approaches that do not erplicity :1:

require a loss function., However, in practical applications L
where the diagnosis and integration tasks are embedded in a spe- R
cific IAS, it may be the case that useful loss functions can be e

constructed by reference to the role of the task in the overall SRS

4
performance of the system, ._-q
e The control task offers the broadest spectrum of possible appli-

cations in image-analysis. This comes about because the process
of control requires the broadest view of system goals, proce-

of belief states.

dures, and assumptions, Control can ordinarily subsume both ;ij
diagnosis and integration. It will, however, require a large ‘%
algebra of statements and will thus penalize those approaches S
that extend this algebra to include the broader representations N
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- ® The classical Bayes approach offers a somewhat simpler and more
familiar technique of evidential calculation. As was seen in the
sample tasks, appropriate conditional and a priori p-values must

. be developed. Furthermore, their influence permeates the entire

ER process; if they are inapproapriate, then the process may not
vield the desired result.

L ° The convex Bayes approach offers a more robust representation of

belief states capable of handling each of the sample tasks. The
m additional computation required may be justified when addressing
complex tasks such as control, but is probably not justified when
addressing simpler tasks such as integration, In addition, the
overhead associated with sorting out the proper use of expected
loss in this context may only be palatable when the task is suf-
ficiently complex,

) The Dempster-Shafer approach offers a somewhat more robust
belief-state representation and also appears to be capable of
handling each of the sample tasks, Comments concerning justifi-
cation of the additional computational burden also apply here,

e although some research seeking efficient algorithms has appeared

L (B2). The proper translation of support and plausibility into

decisions is not yet based upon a large body of practical experi-
ence, and thus adds some difficulty to possible applications in
image analysis. In addition, the influence of the initial mass
distribution on the evolution of belief states requires detailed

investigation,
.l ) The Kyburg approach is the most abstract, but may offer signifi-
cant benefits when tasks involve sorting relevant from irrelevant
Ve knowledge, The K-relevance criterion has had little exercise in

the world of practical applications, but studies such as this one
form a growing basis for such application,

I' ° The Neyman-Pearson approach offers a concept, the confidence
interval, that is initially appealing in terms of modeling the
confidence that human experts might have in the evidential con-
nection between various parameters. However, its foundations are
i clearly limited to the treatment of statistical hypotheses invol-
’ ving well-defined populations, This fact advises caution in the
extension of this approach to less statistically-oriented

e domains. Within domains that correspond to sampling tasks, its
application may well be justified.

° The possibility approach offers a framework within which it may
. be more convenient to capture certain relevant knowledge in the
image-analysis domain, particularly in complex control tasks.

N This is based upon its ability to characterize imprecise linguis-
L tic terms ("usually", "sometimes", etc,) as fuzzy sets., Initial
' results are promising (M2), but require extension,

' Directions for further research based upon these observations will be sug-

gested in Chapter 1V.




.

E. SUMMARY

The research into application of evidential-reasoning approaches to
expert-gystem tasks in image analysis reported in Chapter III can be summa-

rized as follows:

° Major expert-system tasks in this domain are: (1) diagnosis, the
inference of system behavior from data on system processes, (2)
integration, the meaningful combination of a number of disparate
inputs into a smaller number of outputs, and (3) control, the
choice of actions that influence system behavior,

® Each of the ER approaches can be applied to sample tasks from
these three categories. Several strengths and weaknesses can be
identified:

- Interval and convex-set representations of belief states may
be ugseful in complex ES tasks (e.g., control), but do so at
the expense of added complexity.

- New and more general decision procedures must be developed
in order to make practical use of these robust representa-

tions.

- Criteria of evidential relevance are being developed, but
require practical application for assessment,

-— Imprecise linguistic terms may be characterized by fuzzy
sets, but this also requires practical application for
assessment,

Chapter IV summarizes overall results from the current effort and discusses

directions for futher research.
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IV: CURRENT RESULTS AND DIRECTIONS FOR FURTHER RESEARCH

A. CURRENT RESULTS

The evidential-reasoning research reported in Chapter 11 can be summa-

rized as follows:

® The evidential-reasoning problem can be formulated in terms of a
four-part paradigm. The component parts are the background ele-
ments, the observation reports, the updatingy mechanism, and the
decision mechanism.

° Each of the six major apprcoaches can be expressed in terms of the
four-part paradigm.

® Major similarities in the ER approaches are found in two back-
ground elements:

- structure of the algebra of statements (but not necessarily
the content)

-- the loss function,
e Maj or differences in the ER approaches are found in several com-
ponents:

- structures given to belief states (points, intervals, convex
sets, fuzzy sets)

- updating algorithms (Bayes' Theorem, Dempster's Rule, prin-
ciples of direct inference, confidence intervals, fuzzy
combination)

- decision algorithms (expected loss on point-valued p-
functions, expected loss on intervals or convex sets, fuzzy
decision rules).

The research into application of evidential-reasoning approaches to
expert-system tasks in image-analysis reported in Chapter III can be summa-

rized as follows:
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° Maj or expert-system tasks in this domain are: (1) diagnosis, the
inference of system behavior from data on system processes, (2)
integration, the meaningful combination of a number of disparate
inputs into a smaller number of outputs, and (3) control, the
choice of actions that influence gystem behavior.

) Each of the ER approaches can be applied to sample tasks from
these three categories, Several strengths and weaknesses can be
identified:

-- Interval and convex-set representations of belief states may
be useful in complex ES tasks (e.g., control), but do so at
the expense of added complexity.

-- Specialized decision procedures must be developed in order
to make practical use of these robust representations,

- Criteria of evidential relevance are being developed, but
require practical application for assessment,

- Imprecise linguistic terms may be characterized by fuzzy
sets, but this also requires practical application for
assessment.

In the following section we suggest additional research based upon these

results.

B. DIRECTIONS FOR FURTHER RESEARCH

The current effort has resulted in identification of several key

issues for the application of expert systems to image analysis. The focal
points of these issues are:

] Nature of the most important IAS tasks - precise delineation of
the task objectives, scope, assumptions, inputs, outputs, and
approach is required.

® Utility of interval or convex-set representation of belief states
) Means of representation of relevant knowledge using the rule-
oriented paradigm,
It is clear that these issues are interrelated. However, at this stage of
development of expert systems for image analysis, it appears that the most
important is the first; without such definition of real tasks, the research

issues remain too broad to attack efficiently.
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research and development,

® R&D Plan I

Objective:

(1)
(2)
(3)

Approach:

(4)
(s)

(6)

(7)
(8)

(9)

Lot e & naie )
PR

Presented below are outlines of representative approaches to further
These are designed to embcdy the lessons learned -

thus far and to extend efforts in a practical manner:

develop a prototype image-analysis expert system
for application to current ETL concerns,

L st B e s e b~ e iy P R el s sal mal wads ek el i el At selh Sag st X

identify gpecific image-analysis tasks.
detail inputs, outputs, goals, etc. -

identify and characterize available
hardware and software environments.

identify relevant knowledge.

structure knowledge-base using rule-
oriented, object-oriented, procedure-
oriented, and data-oriented paradigms, as
appropriate,

develop inference control system that will
utilize the knowledge-base,

exercise prototype on sample tasks.

revise knowledge-base and inference control
system, as appropriate,

test and evaluate prototype on real tasks.

Plan I assumes that further research into the choice of appropriate eviden-

tial-resoning techniques is embedded in step (6) of the approach. Plan II

concentrates on this research:
® R&D Plan II

Objective: Compare several ER techniques in direct applica-
tion to one or more detailed image-analysis tasks.

Approach: (1) identify specific image-analysis tasks.,

(2)

(3)

(4)

(5)

detail inputs, outputs, goals, etc,
identify rules that govern appropriate
per formance of the image-analysis tasks.

choose subset of the ER approaches for
detailed numeric application,

perform sample calculations using data
supplied by ETL (or in a format specified
ETL) .
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(6) compare results in terms of desired
objectives, computational burden, and
sensitivity to variations in data and
assumptions.

These two plans are representative of the research directions available,

but not exhaustive of them. Other plans might: (1) concentrate on devel-
oping rules for specific image-analysis tasks, (2) investigate the relative
utility of various types of rule-based control systems, or (3) investigate

the utility of trainable or learning expert-systems for image analysis.
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IAS
LR
LT
PLS
PR
RG
RS
SPT

GLOSSARY

Evidential Reasoning
Expert System

Image Analysis System
Line Removal
Lindenbaum-Tarski Algebra
plausibility

pattern Recognition
Region Growth

Region Split

Support
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